Nanodistricts: Between Global Nanotechnology Promises and Local Cluster Dynamics

  • Douglas K. R. Robinson
  • Arie Rip
  • Aurélie Delemarle
Part of the Sociology of the Sciences Yearbook book series (SOSC, volume 29)


Since the early 2000s, investment into research and development in the nanosciences and nanotechnologies has been increasing, leading to a diverse array of research centres, dedicated firms, and hubs around the world. They might be analysed as industrial districts, but there is still little actual production involved. In any case, they are sites to trace three local-global interactions (in nanotechnology as a domain of research and application) that have not always been looked at this way: (1) global promises and work towards realizing them; (2) technological platforms; (3) institutional entrepreneurs realizing things locally inspired by the global promise and using it as a resource. We might still speak of nanodistricts, but it would be a new kind of district compared with the classical Marshallian notion.


Nanodistrict Technology platform Technology agglomeration Institutional entrepreneurship Nanotechnology 


  1. Agrawal, A., and I. Cockburn. 2003. The anchor tenant hypothesis: Exploring the role of large, local, R&D intensive firms in regional innovation systems. International Journal of Industrial Organization 21: 1227–1253.CrossRefGoogle Scholar
  2. Andersen, M.M. 2011. Silent innovation: Corporate strategizing in early nanotechnology evolution. Journal of Technology Transfer 36(6): 680–696.CrossRefGoogle Scholar
  3. Bainbridge, W. 2009. Personality enhancement and transfer. In Unnatural selection. The challenges of engineering tomorrow’s people, ed. P. Healey and S. Rayner, 32–39. London/Sterling: Earthscan.Google Scholar
  4. Bathelt, H., A. Malmberg, and P. Maskell. 2004. Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation. Progress in Human Geography 28(1): 31–56.CrossRefGoogle Scholar
  5. Bensaude Vincent, B. 2009. Les vertiges de la technoscience. Paris: Édition de la Découverte.Google Scholar
  6. Berube, D. 2006. Summit time. Nano Today 1(1): 48.CrossRefGoogle Scholar
  7. Binnig, G., and H. Rohrer. 2000. Scanning tunneling microscopy. IBM Journal of Research and Development 44(1–2): 279–93.CrossRefGoogle Scholar
  8. Binnig, G., C.F. Quate, and C. Gerber. 1986. Atomic force microscope. Physical Review Letters 56(9): 930.CrossRefGoogle Scholar
  9. Chesbrough, H. 2003. Open innovation: The new imperative for creating and profiting from technology. Boston: Harvard Business School Press.Google Scholar
  10. Delemarle, A., B. Kahane, L. Villard, and P. Larédo. 2009. Production in nanotechnologies: A flat world with many hills and mountains. Nanotechnology Law and Business 2009: 103–122.Google Scholar
  11. Drexler, K.E. 1986. Engines of creation: The coming era of nanotechnology. New York: Anchor Books.Google Scholar
  12. Drexler, K.E. 1999. Building molecular machine systems. Trends in Biotechnology 17: 5–7.CrossRefGoogle Scholar
  13. Garud, R., A. Kumaraswamy, and P. Karnøe. 2010. Path dependence or path creation? Journal of Management Studies 47(4): 760–774.CrossRefGoogle Scholar
  14. Joly, P.B., and A. Kaufmann. 2008. Lost in translation. The need for upstream engagement with nanotechnology on trial. Science as Culture 17(3): 225–247.CrossRefGoogle Scholar
  15. Joly, P.B., A. Rip, and M. Callon. 2010. Reinventing innovation. In The governance of innovation. Firms, clusters and institutions in a changing setting, ed. M.J. Arentsen, W. van Rossum, and A.E. Steenge, 19–32. Cheltenham: Edward Elgar Publishing.Google Scholar
  16. Keating, P., and A. Cambrosio. 2003. Biomedical platforms: Realigning the normal and the pathological in late twentieth-century medicine. Cambridge, MA: MIT Press.Google Scholar
  17. Latour, B. 1987. Science in action: How to follow scientists and engineers through society. Milton Keynes: Open University Press.Google Scholar
  18. Merz, M., and P. Biniok. 2010. How technological platforms reconfigure science-industry relations: The case of micro- and nanotechnology. Minerva 48(2): 105–124.CrossRefGoogle Scholar
  19. Meyer-Krahmer, F. 1999. Was bedeutet Globalisierung für Aufgaben und Handlungsspielraüme nationaler Innovationspolitiken? In Innovationspolitik in globalisierten Arenen, ed. K. Grimme, S. Kuhlmann, and F. Meyer-Krahmer, 43–73. Opladen: Leske & Budrich.CrossRefGoogle Scholar
  20. Nightingale, P., M. Meyer, M. Morgan, I. Rafols, and P. van Zwanenberg. 2008. Nanomaterials innovation systems: Their structure, dynamics and regulation. Report for the Royal Commission on Environmental Pollution, SPRU, University of Sussex.Google Scholar
  21. Parandian, A. 2012. Constructive TA of newly emerging technologies. Stimulating learning by anticipation through bridging events. PhD dissertation, Technical University Delft.Google Scholar
  22. Parandian, A., A. Rip, and H. Te Kulve. 2012. Dual dynamics of promises and waiting games around emerging nanotechnologies. Technology Analysis & Strategic Management 24(6): 565–582.CrossRefGoogle Scholar
  23. Peerbaye, A. 2004. La construction de l’espace génomique en France: La place des dispositifs instrumentaux. PhD dissertation, École Normale Supérieure de Cachan, Cachan.Google Scholar
  24. Rip, A. 2002. Regional innovation systems and the advent of strategic science. Journal of Technology Transfer 27: 123–131.CrossRefGoogle Scholar
  25. Rip, A. 2006. Folk theories of nanotechnologists. Science as Culture 15(4): 349–365.CrossRefGoogle Scholar
  26. Rip, A. 2011. Science institutions and grand challenges of society: A scenario. Asian Research Policy 2(1): 1–9.Google Scholar
  27. Rip, A., and J.-P. Voss. 2013. Umbrella terms as a conduit in the governance of emerging science and technology. Science, Technology and Innovation Studies 9(2): 39–59.Google Scholar
  28. Robinson, D.K.R. 2010. Constructive technology assessment of emerging nanotechnologies: Experiments in interactions. PhD manuscript, University of Twente, Enschede.Google Scholar
  29. Robinson, D.K.R., A. Rip, and V. Mangematin. 2007. Technological agglomeration and the emergence of clusters and networks in nanotechnology’. Research Policy 36(6): 871–879.CrossRefGoogle Scholar
  30. Roco, M, and W. Bainbridge (eds.). 2002. Converging technologies for improving human performance. Nanotechnology, biotechnology, information technology and cognitive science. National Science Foundation. Journal of nanoparticle research 4(4): 281–295. Kluwer Academic PublishersGoogle Scholar
  31. Saxenian, A. 1994. Regional advantage: Culture and competition in silicon valley and route 128. Cambridge, MA: Harvard University Press.Google Scholar
  32. Saxenian, A. 1998. Regional systems of innovation and the blurred firm. In Local and regional systems of innovation, ed. J. De la Mothe and G. Paquet, 29–4. Dordrecht: Kluwer.CrossRefGoogle Scholar
  33. Schaller, R. 1997. ‘Moore’s Law’ past, present and future. IEEE Spectrum, June 1997: 53–59.Google Scholar
  34. Simpson, T.W., Z. Siddique, and R.J. Jiao. 2006. Product platform and product family design: Methods and applications. Berlin: Springer.CrossRefGoogle Scholar
  35. Sydow, J., A. Windeler, C. Schubert, and G. Möllering. 2007. Organizing networks for path creation and extension in semiconductor manufacturing technologies. Social Science Research Network, working paper: 1–40.Google Scholar
  36. Tushman, M., and P. Anderson (eds.). 1997. Managing strategic innovation and change. Oxford: Oxford University Press.Google Scholar
  37. Wang, M.D., H. Yin, R. Landick, J. Gelles, and S.M. Block. 1997. Stretching DNA with optical tweezers. Biophysical Journal 72(3): 1335–1346.CrossRefGoogle Scholar
  38. Youtie, J., and P. Shapira. 2010. Metropolitan development of nanotechnology: Concentration or dispersion? In Nanotechnology, equity, and equality. The yearbook of nanotechnology in society, vol. 2, ed. S.E. Cozzens and J. Wetmore, 165–180. Berlin: Springer.CrossRefGoogle Scholar
  39. Zucker, L.G., M.R. Darby, and J. Armstrong. 1998. Geographically localized knowledge: Spillovers or markets? Economic Inquiry 36(1): 65–86.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Douglas K. R. Robinson
    • 1
  • Arie Rip
    • 2
  • Aurélie Delemarle
    • 3
  1. 1.Université Paris-Est Marne-la-Vallée, IFRIS-LATTS, ESIEEMarne-la-ValléeFrance
  2. 2.Science, Technology, and Policy Studies (STePS)University of TwenteEnschedeThe Netherlands
  3. 3.Université Paris Est, IFRIS, Ecole des Ponts ParisTechMarne-la-ValléeFrance

Personalised recommendations