Skip to main content

Why Bring Organic and Molecular Electronics to Spintronics

  • Chapter
  • First Online:
Book cover Molecular Spintronics

Part of the book series: Springer Theses ((Springer Theses))

  • 1183 Accesses

Abstract

Organic spintronics field is an emerging field at the frontier between organic chemistry and spintronics. Exploiting the peculiarity of these two fields, it combines the flexibility, versatility and low production cost of organic materials with the nonvolatility, spin degree of freedom and beyond CMOS capabilities offered by spintronics. Before starting the discussion on the organic spintronics field, in this chapter will be provided a brief introduction on organic and molecular electronics and the specificities of molecules. This will help to understand the advantages that molecular systems can bring to spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.K. Chiang, C.B. Fincher, J.Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39(17), 1098–1101 (1977)

    Article  CAS  Google Scholar 

  2. I. Díez-Pérez, J. Hihath, Y. Lee, L. Yu, L. Adamska, M.A. Kozhushner, I.I. Oleynik, N. Tao, Rectification and stability of a single molecular diode with controlled orientation. Nat. Chem. 1, 635–641 (2009)

    Article  Google Scholar 

  3. B. Mann, H. Kuhn, Tunneling through fatty acid salt monolayers. J. Appl. Phys. 42, 4398–4405 (1971)

    Article  CAS  Google Scholar 

  4. A. Aviram, M.A. Ratner, Molecular rectifiers. Chem. Phys. Lett. 29(2), 277–283 (1974)

    Article  CAS  Google Scholar 

  5. M. Galbiati, S. Tatay, C. Barraud, A.V. Dediu, F. Petroff, R. Mattana, P. Seneor, Spinterface: crafting spintronics at the molecular scale. MRS Bull. 39, 602–607 (2014)

    Article  CAS  Google Scholar 

  6. H. Vazquez, R. Oszwaldowski, P. Pou, J. Ortega, R. Pérez, F. Flores, A. Kahn, Dipole formation at metal/PTCDA interfaces: role of the charge neutrality level. EPL (Europhys. Lett.) 65(6), 802 (2004)

    Article  CAS  Google Scholar 

  7. M.L. Perrin, C.J.O. Verzijl, C.A. Martin, A.J. Shaikh, R. Eelkema, J.H. van Esch, J.M. van Ruitenbeek, J.M. Thijssen, H.S.J. van der Zant, D. Dulić, Large tunable image-charge effects in single-molecule junctions. Nat. Nanotechnol. 8, 282–287 (2013)

    Google Scholar 

  8. C. Boulas, J. Davidovits, F. Rondelez, D. Vuillaume, Suppression of charge carrier tunneling through organic self-assembled monolayers. Phys. Rev. Lett. 76, 4797–4800 (1996)

    Article  CAS  Google Scholar 

  9. M. Cohen, L. Coleman, A. Garito, A. Heeger, Electrical conductivity of tetrathiofulvalinium tetracyanoquinodimethan (TTF) (TCNQ). Phys. Rev. B 10, 1298–1307 (1974)

    Article  CAS  Google Scholar 

  10. R.G. Kepler, P.M. Beeson, S.J. Jacobs, R.A. Anderson, M.B. Sinclair, V.S. Valencia, P.A. Cahill, Electron and hole mobility in tris(8-hydroxyquinolinolato-N1, O8) aluminum. Appl. Phys. Lett. 66, 3618 (1995)

    Article  CAS  Google Scholar 

  11. G. Horowitz, Organic field-effect transistors. Adv. Mater. 10, 365–377 (1998)

    Article  CAS  Google Scholar 

  12. C. Reese, Z. Bao, High-resolution measurement of the anisotropy of charge transport in single crystals. Adv. Mater. 19, 4535–4538 (2007)

    Article  CAS  Google Scholar 

  13. Y. Yuan, G. Giri, A.L. Ayzner, A.P. Zoombelt, S.C.B. Mannsfeld, J. Chen, D. Nordlund, M.F. Toney, J. Huang, Z. Bao, Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 5, 3005 (2014)

    Google Scholar 

  14. C. Barraud, C. Deranlot, P. Seneor, R. Mattana, B. Dlubak, S. Fusil, K. Bouzehouane, D. Deneuve, F. Petroff, A. Fert, Magnetoresistance in magnetic tunnel junctions grown on flexible organic substrates. Appl. Phys. Lett. 96, 072502 (2010)

    Article  Google Scholar 

  15. S.S.P. Parkin, K.P. Roche, T. Suzuki, Giant magnetoresistance in antiferromagnetic Co/Cu multilayers grown on kapton. Jpn. J. Appl. Phys. 31(9A), 1246–1249 (1992)

    Article  Google Scholar 

  16. S.S.P. Parkin, Flexible giant magnetoresistance sensors. Appl. Phys. Lett. 69(20), 3092–3094 (1996)

    Article  CAS  Google Scholar 

  17. F. Yan, G. Xue, F. Wan, A flexible giant magnetoresistance sensor prepared completely by electrochemical synthesis. J. Mater. Chem. 12, 2606–2608 (2002)

    Article  CAS  Google Scholar 

  18. T. Uhrmann, L. Bär, T. Dimopoulos, N. Wiese, M. Rührig, A. Lechner, Magnetostrictive GMR sensor on flexible polyimide substrates. J. Magn. Magn. Mater. 307(2), 209 (2006)

    Article  CAS  Google Scholar 

  19. A. Bedoya-Pinto, M. Donolato, M. Gobbi, L.E. Hueso, P. Vavassori, Flexible spintronic devices on Kapton. Appl. Phys. Lett. 104, 062412 (2014)

    Article  Google Scholar 

  20. D.R. McCamey, H.A. Seipel, S.Y. Paik, M.J. Walter, N.J. Borys, J.M. Lupton, C. Boehme, Spin Rabi flopping in the photocurrent of a polymer light-emitting diode. Nat. Mater. 7, 723–728 (2008)

    Article  CAS  Google Scholar 

  21. C.G. Yang, E. Ehrenfreund, Z.V. Vardeny, Polaron spin-lattice relaxation time in pi-conjugated polymers from optically detected magnetic resonance. Phys. Rev. Lett. 99, 157401 (2007)

    Article  CAS  Google Scholar 

  22. S. Sanvito, A.R. Rocha, Molecular-spintronics: the art of driving spin through molecules. J. Comput. Theor. Nanosci. 3, 624–642 (2006)

    CAS  Google Scholar 

  23. V.I. Krinichnyi, S.D. Chemerisov, Y.S. Lebedev, EPR and charge-transport studies of polyaniline. Phys. Rev. B 55(24), 16233 (1997)

    Article  CAS  Google Scholar 

  24. B. Dlubak, M.-B. Martin, C. Deranlot, B. Servet, S. Xavier, R. Mattana, M. Sprinkle, C. Berger, W.A. De Heer, F. Petroff, A. Anane, P. Seneor, A. Fert, Highly efficient spin transport in epitaxial graphene on SiC. Nat. Phys. 8, 557–561 (2012)

    Article  CAS  Google Scholar 

  25. C. Barraud, P. Seneor, R. Mattana, S. Fusil, K. Bouzehouane, C. Deranlot, P. Graziosi, L. Hueso, I. Bergenti, V. Dediu, F. Petroff, A. Fert, Unravelling the role of the interface for spin injection into organic semiconductors. Nat. Phys. 6, 615–620 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Galbiati .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Galbiati, M. (2016). Why Bring Organic and Molecular Electronics to Spintronics. In: Molecular Spintronics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-22611-8_2

Download citation

Publish with us

Policies and ethics