Advertisement

Neural Systems Underlying the Prediction of Complex Events

  • Ricarda I. SchubotzEmail author
Chapter
Part of the Cognitive Systems Monographs book series (COSMOS, volume 29)

Abstract

Animals depend on predictions about the near future to react and act in a timely, situation-appropriate fashion. Prediction is particularly challenged in the face of events: these entail a stimulus whose temporally directed structure is meaningful in itself. Many simple events, e.g. regular motion, can be predicted by means of dynamic-forward extrapolation. For this class of predictions, the premotor-parietal network is active which we also need to plan our own body movements. However, when it comes to complex events such as action, speech, or music, we additionally need to retrieve semantic and episodic memories in order to feed and restrict the required predictions. These processes are reflected in activity of functionally specialized brain networks, as outlined in the present article for the case of action prediction. Here, knowledge about objects, rooms, and actors is exploited, but also action scripts that account for the actions’ probabilistic architecture.

Keywords

Action observation Dynamic-forward extrapolation Action scripts Probabilistic prediction Object knowledge Rooms Actor Episodic memory Semantic memory Premotor cortex Inferior frontal gyrus 

References

  1. 1.
    Casati, R., Varzi, A.: “Events”, The stanford encyclopedia of philosophy (Fall 2014 Edition). In: Zalta, E.N. (ed.). http://plato.stanford.edu/archives/fall2014/entries/events/
  2. 2.
    Schubotz, R.I., Korb, F.M., Schiffer, A.M., Stadler, W., von Cramon, D.Y.: The fraction of an action is more than a movement: neural signatures of event segmentation in fMRI. NeuroImage 61(4), 1195–1205 (2012)CrossRefGoogle Scholar
  3. 3.
    Helmholtz, H.: Handbuch der physiologischen Optik. Dover, NewYork (1860/1962)Google Scholar
  4. 4.
    Wolpert, D.M.: Probabilistic models in human sensorimotor control. Hum. Mov. Sci. 26(4), 511–524 (2007)CrossRefGoogle Scholar
  5. 5.
    Friston, K.J.: A theory of cortical responses. Philos. Trans. Roy. Soc. B. 360(1456), 815–836 (2005)CrossRefGoogle Scholar
  6. 6.
    Mumford, D.: On the computational architecture of the neocortex: the role of cortico-cortical loops. Biol. Cybern. 66, 241–251 (1992)CrossRefGoogle Scholar
  7. 7.
    Rao, R.P., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive field effects. Nat. Neurosci. 2(1), 79–87 (1999)CrossRefGoogle Scholar
  8. 8.
    Clark, A.: Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36(3), 181–204 (2013)CrossRefGoogle Scholar
  9. 9.
    Grush, R.: The emulation theory of representation: motor control, imagery, and perception. Behav. Brain Sci. 27(3), 377–396, discussion 396–442 (2004)Google Scholar
  10. 10.
    Bubic, A., von Cramon, D.Y., Schubotz, R.I.: Prediction, cognition and the brain. Front. Hum. Neurosci. 4, 1–15 (2010)Google Scholar
  11. 11.
    Schubotz, R.I., von Cramon, D.Y.: Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location and speed. Cogn. Brain Res. 11, 97–112 (2001)CrossRefGoogle Scholar
  12. 12.
    Schubotz, R.I.: Human premotor cortex: Beyond motor performance. In: MPI Series in Human Cognitive and Brain Sciences, vol. 50. Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig (2004)Google Scholar
  13. 13.
    Fadiga, L., Fogassi, L., Gallese, V., Rizzolatti, G.: Visuomotor neurons: ambiguity of the discharge or ‘motor’ perception? Int. J. Psychophysiol. 35(2–3), 165–177 (2000)CrossRefGoogle Scholar
  14. 14.
    Shin, Y.K., Proctor, R.W., Capaldi, E.J.: A review of contemporary ideomotor theory. Psychol. Bull. 136(6), 943–974 (2010)CrossRefGoogle Scholar
  15. 15.
    Schubotz, R.I.: Prediction of external events with our motor system: towards a new framework. Trends Cogn. Sci. 11(5), 211–218 (2007)CrossRefGoogle Scholar
  16. 16.
    Stadler, W., Schubotz, R.I., von Cramon, D.Y., Springer, A., Graf, M., Prinz, W.: Predicting and memorizing observed action: differential premotor cortex involvement. Hum. Brain Mapp. 32(5), 677–687 (2011)CrossRefGoogle Scholar
  17. 17.
    Stadler, W., Ott, D.V., Springer, A., Schubotz, R.I., Schütz-Bosbach, S., Prinz, W.: Repetitive TMS suggests a role of the human dorsal premotor cortex in action prediction. Front. Hum. Neurosci. 6, 20 (2012)CrossRefGoogle Scholar
  18. 18.
    Schubotz, R.I., Wurm, M.F., Wittmann, M.K., von Cramon, D.Y.: Objects tell us what action we can expect: dissociating brain areas for retrieval and exploitation of action knowledge during action observation in fMRI. Front. Psychol. 5, 1–15 (2014)CrossRefGoogle Scholar
  19. 19.
    Fagg, A.H., Arbib, M.A.: Modeling parietal-premotor interactions in primate control of grasping. Neural Netw. 11(7–8), 1277–1303 (1998)CrossRefGoogle Scholar
  20. 20.
    Schubotz, R.I., Korb, F.M., Schiffer, A.M., Stadler, W., von Cramon, D.Y.: The fraction of an action is more than a movement: Neural signatures of event segmentation in fMRI. NeuroImage 61(4), 1195–1205 (2012)CrossRefGoogle Scholar
  21. 21.
    Schubotz, R.I., von Cramon, D.Y.: Sequences of abstract non-biological stimuli share ventral premotor cortex with action observation and imagery. J. Neurosci. 24(24), 5467–5474 (2004)CrossRefGoogle Scholar
  22. 22.
    Wurm, M.F., Schubotz, R.I.: Squeezing lemons in the bathroom: contextual information modulates action recognition. NeuroImage 59(2), 1551–1559 (2012)CrossRefGoogle Scholar
  23. 23.
    Wurm, M.F., Schubotz, R.I.: What’s she doing in the kitchen? Contextual settings modulate speed and accuracy of action recognition in the absence of object information. Cognition, under reviewGoogle Scholar
  24. 24.
    Wurm, M.F., Woitscheck, C., Giuliani, D., Rakoczy, H., Schubotz, R.I.: Cooking in the kitchen: location-action coupling informs action recognition in 4–8 year old children (2014) (in preparation)Google Scholar
  25. 25.
    Wurm, M.F., von Cramon, D.Y., Schubotz, R.I.: The context-object-manipulation (COM) triad: cross-talk during action perception revealed by fMRI. J. Cogn. Neurosci. 24(7), 1548–1559 (2012)CrossRefGoogle Scholar
  26. 26.
    Wurm, M.F., von Cramon, D.Y., Schubotz, R.I.: Do we mind other minds when we mind other mind’s actions? An fMRI study. Hum. Brain Mapp. 32(12), 2141–2150 (2011)CrossRefGoogle Scholar
  27. 27.
    Hrkać, M., Wurm, M.F., Schubotz, R.I.: Action observers implicitly expect actors to act goal-coherently, even if they don’t: an fMRI study. Hum. Brain Mapp. 35(5), 2178–2190 (2014)CrossRefGoogle Scholar
  28. 28.
    Badre, D., Wagner, A.D.: Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 45(13), 2883–2901 (2007)CrossRefGoogle Scholar
  29. 29.
    Schank, R.C., Abelson, R.P.: Scripts, plans, goals, and understanding: an inquiry into human knowledge structures. Lawrence Erlbaum, Hillsdale, New Jersey (1977)zbMATHGoogle Scholar
  30. 30.
    Grafman, J.: The structured event complex and the human prefrontal cortex. In: Stuss, D.T., Knight, R.T. (eds.) Principles of frontal lobe function, pp. 292–310. Oxford University Press, New York (2002)CrossRefGoogle Scholar
  31. 31.
    Schubotz, R.I., von Cramon, D.Y.: The case of pretense: observing actions and inferring goals. J. Cogn. Neurosci. 21(4), 642–653 (2009)CrossRefGoogle Scholar
  32. 32.
    Wurm, M.F., Hrkać, M., Morikawa, Y., Schubotz, R.I.: Predicting goals in action episodes attenuates BOLD in inferior frontal and occipitotemporal cortex. Behavioral and Brain Research (2014, in press)Google Scholar
  33. 33.
    Hrkać, M., Wurm, M.F., Kühn, A.B., Schubotz, R.I.: Objects mediate goal integration in IFG during action observation. Plos One (under review)Google Scholar
  34. 34.
    Friston, K., Kiebel, S.: Cortical circuits for perceptual inference. Neural Netw. 22(8), 1093–1104 (2009)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Newtson, D., Engquist, G.: The perceptual organization of ongoing behavior. J. Exp. Soc. Psychol. 12(5), 436–450 (1976)CrossRefGoogle Scholar
  36. 36.
    Zacks, J.M., Sargent, J.Q.: Event perception: a theory and its application to clinical neuroscience. In: Ross, B.H. (ed.) Psychology of Learning and Motivation vol. 53, pp. 1–45 (2009)Google Scholar
  37. 37.
    Ahlheim, C., Stadler, W., Schubotz, R.I.: Dissociating dynamic probability and predictability in observed actions—an fMRI study. Front. Hum. Neurosci. 8, 273 (2014)CrossRefGoogle Scholar
  38. 38.
    Schiffer, A.M., Ahlheim, C., Ulrichs, K., Schubotz, R.I.: Neural changes when actions change: adaptation of strong and weak expectations. Hum. Brain Mapp. 34(7), 1713–1727 (2013)CrossRefGoogle Scholar
  39. 39.
    Schiffer, A.M., Krause, K.H., Schubotz, R.I.: Surprisingly correct: unexpectedness of observed actions activates the mPFC. Hum. Brain Mapp. 35(4), 1615–1629 (2014)CrossRefGoogle Scholar
  40. 40.
    Schiffer, A.M., Schubotz, R.I.: Caudate nucleus signals for breaches of expectation in a movement observation paradigm. Front. Hum. Neurosci. 5, 38 (2011)CrossRefGoogle Scholar
  41. 41.
    Schiffer, A.M., Ahlheim, C., Wurm, M.F., Schubotz, R.I.: Surprised at all the entropy: hippocampal, caudate and midbrain contributions to learning from prediction errors. PLoS ONE 7(5), e36445 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biological Psychology, Institute for PsychologyUniversity of MuensterMuensterGermany

Personalised recommendations