Anticipation and Computation: Is Anticipatory Computing Possible?

  • Mihai NadinEmail author
Part of the Cognitive Systems Monographs book series (COSMOS, volume 29)


Anticipation, a definitory characteristic of the living, is expressed in action. It implies awareness of past, present, and future, i.e., of time. Anticipatory processes pertain to the world’s dynamics. Anticipation also implies an observation capability, the acquired function of processing what is observed, and the ability to effect change. Computation means processing quantitative distinctions of physical entities and of those that inform the condition and behavior of the living. Autonomic processing is the prerequisite for anticipatory expression. In the physical, processing is reactive; in the living it is autonomic. Automated calculations, inspired by human “computers,” are different in nature from those involved in living dynamics. To distinguish between anticipatory and predictive computation is to account for the role of the possible future in dealing with change.


Algorithmic Anticipation Computer Forecast Prediction Non-algorithmic Turing 


  1. 1.
    Mitchell, M.: Is the universe a universal computer? Science 298(5591), 65–68 (2002)CrossRefGoogle Scholar
  2. 2.
    Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. London A 400, 97–117 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Hawking, S.: Stephen Hawking warns artificial intelligence could end mankind. Interview with Rory Cellan-Jones, BBC. Accessed 2 Dec 2014
  4. 4.
    Kurzweil, R.: The Singularity is Near. Viking Press, New York (2005)Google Scholar
  5. 5.
    Shannon, C.: Interview: Father of the Electronic Information Age by Anthony Liversidge, Omni, August (1987)Google Scholar
  6. 6.
    Minh, V., Kavukculoglu, K., Silver, D., et al.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015). Accessed 27 Feb 2015
  7. 7.
    Weston, J., Bordes, A., Chopra, S, Mikolov, T.: Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks (2015). Accessed 3 March 2015
  8. 8.
    Monfort, N.: Twisty Little Passages: An Approach to Interactive Fiction. MIT Press, Cambridge (2005)Google Scholar
  9. 9.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)zbMATHGoogle Scholar
  10. 10.
    Zuse, K.: Rechnender Raum. Friedrich Vieweg & Sohn, Braunschweig. English: Calculating space, An MIT Technical Translation Project MAC, MIT, 1970. AZTEC School of Languages, Inc., Cambridge (1969)Google Scholar
  11. 11.
    Gödel, K.: Über formal unentscheidbare Sätze der Principa Mathematica und verwandte Systeme, Monatshefte für Mathematik und Physik. 38, 173–198 (1931). The first incompleteness theorem originally appeared as Theorem VIGoogle Scholar
  12. 12.
    Nadin, M.: G-Complexity quantum computation and anticipatory processes. Comput. Commun. Collab. 2(1), 16–34 (2014)Google Scholar
  13. 13.
    England, J.L.: Statistical physics of self-replication. J. Chem. Phys. 139, 12, 121293 (2013)Google Scholar
  14. 14.
    Carroll, L.: Through the Looking Glass. MacMillan, London (1871).
  15. 15.
    Newton, I.: Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy) (1687)Google Scholar
  16. 16.
    Windelband, W.: Aufsätze und Reden zur Philosophie und ihrer Geschichte, 5. Präludien, Tübingen (1915)Google Scholar
  17. 17.
    Montgomery, R.: Gauge theory of the falling cat. In: Enos, M.J. (ed.) Dynamics and Control of Mechanical Systems, American Mathematical Society, pp. 193–218 (1993).
  18. 18.
    Mehta, R.: Mathematics of the Falling Cat (2012).
  19. 19.
    Kane, T.R., Scher, M.: A dynamical explanation of the falling of the cat phenomenon. Int. J. Solids Struct. 5, 663–670 (Pergamon Press, London, 1969)Google Scholar
  20. 20.
    Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik [On the clear content of quantum-theoretic kinematics and mechanics]. Z. Angew. Phys. 43(3–4), 172–198 (1927)zbMATHGoogle Scholar
  21. 21.
    Fletcher, P.C., Anderson, J.M., Shanks, D.R., Honey, R., Carpenter, T.A., Donovan, T., Papadakis, N., Bullmore, E.T.: Responses of human frontal cortex to surprising events are predicted by formal associative learning theory. Nat. Neurosci. 4(10), 1043–1048 (2001)Google Scholar
  22. 22.
    Nadin, M.: Anticipation in Knowledge Media Design (2nd edn). Knowledge Media Design (Stefan, P., (ed.)), pp. 71–90. Oldenburg, Berlin (2006)Google Scholar
  23. 23.
    Kahneman, D. and Tversky A.: On the reality of cognitive illusions. Psychol. Rev. 103(3), 582–591 (1996)Google Scholar
  24. 24.
    Delfabbro, P.: The stubborn logic of regular gamblers: obstacles and dilemmas in cognitive gambling research. J. Gambl. Stud. 20(1), 1–21 (2004)CrossRefGoogle Scholar
  25. 25.
    Gigerenzer, G., Muir Gray, J.A. (eds.): Better Doctors, Better Patients, Better Decisions: Envisioning Health Care 2020. MIT Press, Cambridge, (2011)Google Scholar
  26. 26.
    Sedlmeier, P., Gigerenzer, G.: Do studies of statistical power have an effect of the power of studies? Psychol. Bull. 105(2), 309–316 (1989)CrossRefGoogle Scholar
  27. 27.
    Tversky, A., Gilovich, T.: The “Hot Hand”: Statistical reality or cognitive illusiion? Chance, vol. 2, no. 4., pp. 31–34. Taylor & Francis, London (1989, published on line 2012)Google Scholar
  28. 28.
    Miller, J.B., Sanjurjo, A.: A Cold Shower for the Hot Hand Fallacy. Social Science Research Network (Working Paper No. 518) (2014)Google Scholar
  29. 29.
    Hertwig, R., Ortmann, A.:The Cognitive Illusion Controversy: A Methodological Debate in Disguise that Matters to Economists. Experimental Business Research, pp. 113–130. Springer, New York (2005)Google Scholar
  30. 30.
    Tsetsos, K., Chater, N., Usher, M.: Salience driven value integration explains decision biases and preference reversal. Proc. Natl. Acad. Sci. U.S.A. 109(24), 9659–9664 (2012)CrossRefGoogle Scholar
  31. 31.
    Bernoulli, J.: Ars Conjectandi (The Art of Conjecturing, in Latin) (1713)Google Scholar
  32. 32.
    von Glasersfeld, E.: Radical Constructivism: A Way of Knowing and Learning. The Falmer Press, London/Washington (1995)CrossRefGoogle Scholar
  33. 33.
    Salimpoor, V., Benovoy, M., Larcher, K., Dagher, A., Zatorre, R.J.: Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 14, 257–256 (2011)Google Scholar
  34. 34.
    Ekman, P., Rosenberg, E.L. (eds.): What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS). Oxford University Press, New York (1997)Google Scholar
  35. 35.
    Ekman, P.: Emotions Revealed. Times Books, New York (2003)Google Scholar
  36. 36.
    Gladwell, M.: The Naked Face. Can experts really read your thoughts? The New Yorker, pp. 38–49 (2002)Google Scholar
  37. 37.
    Arsham, H.: Time Series Analysis and Forecasting Techniques (2002).
  38. 38.
    Dayan, P., Kakade, S., Montague, P.R.: Learning and selective attention. Nat. Neurosci. 3, 1218–1223 (2000)CrossRefGoogle Scholar
  39. 39.
    Nicolelis, M.A.: Actions from thoughts. Nature 409(6818), 403–407 (2001)CrossRefGoogle Scholar
  40. 40.
    Nicolelis, M.A.L., Lebedev, M.A.: Principles of neural ensemble physiology underlying the operation of brain–machine interfaces. Nat. Rev. Neurosci. 10(7), 530–540 (2009)CrossRefGoogle Scholar
  41. 41.
    Nadin, M.: The Civilization of Illiteracy. Dresden University Press, Dresden (1997)Google Scholar
  42. 42.
    Nadin, M.: Antecapere ergo sum. What price knowledge? AI & Society 25th Anniversary Volume: A Faustian Exchange: What is To Be Human in the Era of Ubiquitous Technology, vol. 28, pp. 39–50. (Springer, London, 2013)Google Scholar
  43. 43.
    Nadin, M.: Anticipation and risk—from the inverse problem to reverse computation. In: Nadin, M. (ed.) Risk and Decision Analysis vol. 1, no. 2, pp. 113–139. IOS Press, Amsterdam (2009)Google Scholar
  44. 44.
    Nadin. M.: Anticipatory computing: from a high-level theory to hybrid computing implementations. Int. J. Appl. Res. 1(1), 1–37 (2010) (Image based on earlier work: Hybrid Anticipatory Control Mechanisms (2002))Google Scholar
  45. 45.
    Taleb, N.N.: Learning to love volatility. Wall Street Journal (2012)Google Scholar
  46. 46.
    Wigner, E.: The unreasonable effectiveness of mathematics in the natural sciences. Richard courant lecture in mathematical sciences delivered at New York University, May 11, 1959. Commun. Pure Appl. Math. 13, 1–14 (1960)zbMATHCrossRefGoogle Scholar
  47. 47.
    Gelfand, I.M., Tsetlin, M.L.: Mathematical Modeling of Mechanisms of the Central Nervous System. Models of the Structural-Functional Organization of Certain Biological Systems (I.M. Gelfand, Editor; C.R. Beard, Trans.) MIT Press, Cambridge (1971)Google Scholar
  48. 48.
    Velupillai, K.V.: The Unreasonable Ineffectivenss of Mathematics in Economics. Working Paper No. 80 (2004). [(Retrieved February 28, 2015) and in Camb. J. Econ. (Spec. Issue Econ. Future), 29(6), 849–872 (2005)]
  49. 49.
    Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurons in the cat’s striate cortex. J. Physiol. 165(3), 559–568 (1963)CrossRefGoogle Scholar
  50. 50.
    von Foerster, H., Poerksen, B.: Understanding systems: conversations on epistemology and ethics. Kluwer, New York (2002)Google Scholar
  51. 51.
    Wittgenstein, L.: Remarks on the Philosophy of Psychology, Vol. 1, G. E. M. Anscombe and G. H. von Wright (Eds.), G. E. M. Anscombe (Trans.); Vol. 2, G. H. von Wright and H. Nyman (Eds.), C. G. Luckhardt and M. A. E. Aue (Trans.). Blackwell, Oxford. (1980) Cited in J. Floyd: Wittgenstein’s Diagonal Argument: A Variation on Cantor and Turing.
  52. 52.
    Turing, A.M.: Intelligent machinery [technical report]. Teddington: National Physical Laboratory (1948) cf. (Copeland, B.J., Ed.), The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life Plus the Secrets of Enigma. Oxford University Press, Oxford (2004)Google Scholar
  53. 53.
    Turing, A.M.: Programmers’ Handbook for Manchester electronic computer. Mark II (1951)Google Scholar
  54. 54.
    Gödel, K.: Some remarks on the undecidability results, Collected Works II, pp. 305–306. Oxford University Press, Oxford (1972)Google Scholar
  55. 55.
    Turing, A.M.: The ACE Report. A.M. In: Carpenter, B.E., Doran, R.W. (eds.) Turing’s Ace Report of 1946 and Other Papers. MIT Press, Cambridge (1986)Google Scholar
  56. 56.
    Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J. Comput. Syst. Sci. 50(1), 132–150 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Eberbach, E., Goldin, D., Wegner, P.: Turing’s ideas and models of computation. In: Teuscher, C. (ed.) Alan Turing. Life and Legacy of a Great Thinker. Springer, Berlin/Heidelberg (2004)Google Scholar
  58. 58.
    Elsasser, W.M.: Theory of quantum-mechanical description. Proc. Natl. Acad. Sci. 59(3), 738–744, (1968)Google Scholar
  59. 59.
    Latash, M.L.: Synergy. Oxford University Press, New York (2008)CrossRefGoogle Scholar
  60. 60.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978). (Elsevier, Amsterdam)zbMATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Zadeh, L.A.: Foreword. Anticipation—the end is where we start from (M. Nadin). Lars Müller Verlag (2003)Google Scholar
  62. 62.
    Nadin, M: Quantifying Anticipatory Characteristics. The AnticipationScope and the Anticipatory Profile. In: Iantovics, B., Kountchev, R. (eds.) Advanced Intelligent Computational Technologies and Decision Support Systems, Studies in Computational Intelligence, vol. 486, pp. 143–160. (Springer, New York/London/Heidelberg: Springer 2013)Google Scholar
  63. 63.
    Bennett, C.H.: Undecidable dynamics. Nature 346, 606–607 (1990)CrossRefGoogle Scholar
  64. 64.
    Bennett, C.H.: Universal computation and physical dynamics. Physica D Nonlinear Phenomena 86(1–2), 268–273 (1995). (Elsevier, Amsterdam)zbMATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Bennett, C.H., Landauer, R.: The fundamental physical limits of computation. Sci. Am. 253(1), 48–56 (1985)CrossRefGoogle Scholar
  66. 66.
    Stepney, S.: Local and global models of physics and computation. Int. J. Gen Syst 43(7), 673–681 (2014)zbMATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    Watt, D.A.: Programming Language Design Concepts. Wiley, Hoboken (2004)Google Scholar
  68. 68.
    Landauer, R.: The physical nature of information. Phys. Lett. A 217, 188–193 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Chaitin, G.: What is life? ACM SICACT News 4(January), 12–18 (1970)CrossRefGoogle Scholar
  70. 70.
    MacVittie, K., Katz, E.: Biochemical flip-flop memory systems: essential additions to autonomous biocomputing and biosensing systems. Int. J. Gen Syst 43(7–8), 722–739 (2014)zbMATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    Pejovic, V., Musolesi, M.: Anticipatory mobile computing: a survey of the state of the art and research challenges. ACM Comput. Surv. V(N) (Association for Computing Machinery, New York, 2015)Google Scholar
  72. 72.
    Makin, T.R., Holmes, N.P., Ehrsson, H.H.: On the other hand: dummy hands and peripersonal space. Behav. Brain Res. 191, 1–10 (2008)CrossRefGoogle Scholar
  73. 73.
    Nadin, M. Variability by another name: “repetition without repetition.” In: Anticipation: Learning from the Past. The Russian/Soviet Contributions to the Science of Anticipation, pp. 329–336. Springer (Cognitive Systems Monographs), Chem, 2015Google Scholar
  74. 74.
    Schilling, M., Cruse, H.: What’s next: recruitment of a grounded predictive body model for planning a robot’s actions. Frontiers Psychol 3, 1–19 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.antÉ—Institute for Research in Anticipatory SystemsUniversity of Texas at DallasRichardsonUSA

Personalised recommendations