Advertisement

Representation and Anticipation in Motor Action

  • Thomas SchackEmail author
  • Christoph Schütz
  • André Frank Krause
  • Christian Seegelke
Chapter
Part of the Cognitive Systems Monographs book series (COSMOS, volume 29)

Abstract

This paper introduces a cognitive architecture model of human action, showing how it is organized over several levels and how it is built up to connect the anticipation of future states and related action execution. Basic Action Concepts (BACs) are identified as major building blocks on a representation level. These BACs are considered cognitive tools for mastering the functional demands of movement tasks. Different lines of research, ranging from complex action to manual action, are presented that provide evidence for a systematic relation between the cognitive representation structures and the actual motor performance. It is concluded that such motor representations provide the basis for action anticipation and motor execution by linking higher-level action goals with the lower-level perceptual effects in the form of cognitive reference structures.

Keywords

Representation structure Anticipation Motor hysteresis End-state comfort SDA-M Motor hysteresis 

References

  1. 1.
    Bernstein, N.A.: The Co-ordination and Regulation of Movements. Pergamon Press Ltd, Oxford (1967)Google Scholar
  2. 2.
    Wolpert, D.M., Ghahramani, Z., Flanagan, J.R.: Perspectives and problems in motor learning. Trends Cogn. Sci. 5(11), 487–494 (2001)CrossRefGoogle Scholar
  3. 3.
    Hoffmann, J.: Die Welt der Begriffe. Verlag der Wissenschaften, Berlin (1986)Google Scholar
  4. 4.
    Hoffmann, J.: Anticipatory behavioral control. In: Butz, M.V., Sigaud, O., Gérard, P. (eds.) Anticipatory Behavior in Adaptive Learning Systems, pp. 44–65. Springer, Berlin Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Prinz, W.: A common coding approach to perception and action. In: Neumann, O., Prinz, W. (eds.) Relationships Between Perception and Action, pp. 167–201. Springer, Berlin Heidelberg (1990)CrossRefGoogle Scholar
  6. 6.
    Rosch, E.: Principles of categorization. In: Rosch, E., Lloyd, B. (eds.) Cognition and Categorization, pp. 27–48. Lawrence Erlbaum, Hillsdale (1978)Google Scholar
  7. 7.
    Jeannerod, M.: The Cognitive Neuroscience of Action. Wiley-Blackwell, Oxford (1997)Google Scholar
  8. 8.
    Land, W., et al.: From Action Representation to Action Execution: Exploring the Links Between Cognitive and Biomechanical Levels of Motor Control. Frontiers in Computational Neuroscience, vol. 7 (2013)Google Scholar
  9. 9.
    Schack, T.: The cognitive architecture of complex movement. Int. J. Sport Exerc. Psychol. 2(4), 403–438 (2004)CrossRefGoogle Scholar
  10. 10.
    Schack, T., Ritter, H.: The cognitive nature of action—functional links between cognitive psychology, movement science, and robotics. In: Raab, M., Johnson, J.G., Heekeren, H.R. (eds.) Progress in Brain Research, pp. 231–250. Elsevier, Amsterdam (2009)Google Scholar
  11. 11.
    Krause, A.F., Dürr, V., Bläsing, B., Schack, T.: Evolutionary optimization of echo state networks: multiple motor pattern learning. In: 6th International Workshop on Artificial Neural Networks and Intelligent Information Processing (ANNIIP2010), pp. 63–71 (2010)Google Scholar
  12. 12.
    Maycock, J., et al. Motor synergies and object representations in virtual and real grasping. In: 1st International Conference on Applied Bionics and Biomechanics (ICABB), IEEE (2010)Google Scholar
  13. 13.
    Schack, T.: A method for measuring mental representation. In: Tenenbaum, G., Eklund, B. (eds.) Handbook of Measurement in Sport, Human Kinetics: Champaign, Illinois, pp. 203–214 (2012)Google Scholar
  14. 14.
    Schack, T., Mechsner, F.: Representation of motor skills in human long-term memory. Neurosci. Lett. 391(3), 77–81 (2006)CrossRefGoogle Scholar
  15. 15.
    Weigelt, M., et al.: The cognitive representation of a throwing technique in judo experts—Technological ways for individual skill diagnostics in high-performance sports. Psychol. Sport Exerc. 12(3), 231–235 (2011)CrossRefGoogle Scholar
  16. 16.
    Braun, S.M., et al.: Is it possible to use the structural dimension analysis of motor memory (SDA-M) to investigate representations of motor actions in stroke patients? Clin. Rehabil. 21(9), 822–832 (2007)CrossRefGoogle Scholar
  17. 17.
    Bläsing, B., Puttke, M., Schack, T.: The Neurocognition of Dance—Mind, Movement and Motor Skills. Psychology Press, London (2010)Google Scholar
  18. 18.
    Bläsing, B., Tenenbaum, G., Schack, T.: The cognitive structure of movements in classical dance. Psychol. Sport Exerc. 10(3), 350–360 (2009)CrossRefGoogle Scholar
  19. 19.
    Schack, T., Bar-Eli, M.: Psychological factors of technical preparation. In: Blumenstein, B., Lidor, R., Tenenbaum, G. (eds.) Psychology of Sport Training, pp. 62–103. Perspectives on Sport and Exercise Psychology, Oxford, Meyer & Meyer (2007)Google Scholar
  20. 20.
    Schack, T., Hackfort, D.: Action-theory approach to applied sport psychology. In: Tenenbaum, G., Eklund, R.C. (eds.) Handbook of Sport Psychology (3rd edn.) p. 332–351. Wiley, Hoboken (2007)Google Scholar
  21. 21.
    Velentzas, K., Heinen, T., Schack, T.: Routine integration strategies and their effects on volleyball serve performance and players’ movement mental representation. J. Appl. Sport Psychol. 23(2), 209–222 (2011)CrossRefGoogle Scholar
  22. 22.
    Frank, C., Land, W., Schack, T.: Mental representation and learning: The influence of practice on the development of mental representation structure in complex action. Psychol. Sport Exerc. 14(3), 353–361 (2013)CrossRefGoogle Scholar
  23. 23.
    Bläsing, B., Schack, T., Brugger, P.: The functional architecture of the human body: Assessing body representation by sorting body parts and activities. Exp. Brain Res. 203(1), 119–129 (2010)CrossRefGoogle Scholar
  24. 24.
    Güldenpenning, I., et al.: Motor expertise modulates the unconscious processing of human body postures. Exp. Brain Res. 213(4), 383–391 (2011)CrossRefGoogle Scholar
  25. 25.
    Marteniuk, R.G., et al.: Constraints on human arm movement trajectories. Can. J. Psychol. (Revue Canadienne De Psychologie) 41(3), 365–378 (1987)CrossRefGoogle Scholar
  26. 26.
    Rosenbaum, D.A., Jorgensen, M.J.: Planning macroscopic aspects of manual control. Hum. Mov. Sci. 11(1–2), 61–69 (1992)CrossRefGoogle Scholar
  27. 27.
    Rosenbaum, D.A., et al.: Constraints for action selection: Overhand Versus underhand grips. In: Jeannerod, M. (ed.) Attention and Performance. pp. 321–342. Lawrence Erlbaum Associates, Inc, Hillsdale (1990)Google Scholar
  28. 28.
    Cohen, R.G., Rosenbaum, D.A.: Where grasps are made reveals how grasps are planned: Generation and recall of motor plans. Exp. Brain Res. 157(4), 486–495 (2004)CrossRefGoogle Scholar
  29. 29.
    Herbort, O., Butz, M.V.: Planning and control of hand orientation in grasping movements. Exp. Brain Res. 202(4), 867–878 (2010)CrossRefGoogle Scholar
  30. 30.
    Hughes, C.M.L., Seegelke, C., Schack, T.: The influence of initial and final precision on motor planning: individual differences in end-state comfort during unimanual grasping and placing. J. Mot. Behav. 44(3), 195–201 (2012)CrossRefGoogle Scholar
  31. 31.
    Hughes, C.M.L., et al.: Corrections in grasp posture in response to modifications of action goals. PLoS ONE 7(9), e43015 (2012)CrossRefGoogle Scholar
  32. 32.
    Seegelke, C., Hughes, C.M.L., Schack, T.: An investigation into manual asymmetries in grasp behavior and kinematics during an object manipulation task. Exp. Brain Res. 215(1), 65–75 (2011)CrossRefGoogle Scholar
  33. 33.
    Seegelke, C., et al.: Simulating my own or others action plans?—Motor representations, not visual representations are recalled in motor memory. PLoS ONE 8(12), e84662 (2013)CrossRefGoogle Scholar
  34. 34.
    Weigelt, M., et al.: Moving and memorizing: Motor planning modulates the recency effect in serial and free recall. Acta Psychol. 132, 68–79 (2009)CrossRefGoogle Scholar
  35. 35.
    Schütz, C., et al.: Motor control strategies in a continuous task space. Mot. Control 15(3), 321–341 (2011)Google Scholar
  36. 36.
    Rosenbaum, D.A., et al.: The problem of serial order in behavior: Lashley’s legacy. Hum. Mov. Sci. 26(4), 525–554 (2007)CrossRefGoogle Scholar
  37. 37.
    Schütz, C., Schack, T.: Influence of mechanical load on sequential effects. Exp. Brain Res. 228(4), 445–455 (2013)CrossRefGoogle Scholar
  38. 38.
    van der Wel, R.P.R.D., et al.: Hand path priming in manual obstacle avoidance: Evidence for abstract spatiotemporal forms in human motor control. J. Exp. Psychol. Hum. Percept. Perform. 33(5), 1117–1126 (2007)CrossRefGoogle Scholar
  39. 39.
    Spiegel, M.A., et al.: The costs of changing an intended action: Movement planning, but not execution, interferes with verbal working memory. Neurosci. Lett. 509(2), 82–86 (2012)CrossRefGoogle Scholar
  40. 40.
    Spiegel, M.A., Koester, D., Schack, T.: The functional role of working memory in the (re-)planning and execution of grasping movements. J. Exp. Psychol. Hum. Percept. Perform. 39(5), 1326–1339 (2013)CrossRefGoogle Scholar
  41. 41.
    Gentilucci, M., et al.: Influence of different types of grasping on the transport component of prehension movements. Neuropsychologia 29(5), 361–378 (1991)CrossRefGoogle Scholar
  42. 42.
    Jeannerod, M.: Intersegmental coordination during reaching at natural visual objects. In: Long, J., Baddeley, A. (eds.) Attention and Performance IX. Erlbaum, Hillsdale (1981)Google Scholar
  43. 43.
    Ansuini, C., et al.: Effects of end-goal on hand shaping. J. Neurophysiol. 95, 2456–2465 (2006)CrossRefGoogle Scholar
  44. 44.
    Wunsch, K., et al.: Second-order motor planning in children: insights from a cup-manipulation-task. Psychological Research, pp. 1–9 (2014)Google Scholar
  45. 45.
    Weiss, D.J., Wark, J.D., Rosenbaum, D.A.: Monkey see, monkey plan, monkey do. The end-state comfort effect in cotton-top tamarins (Sanguinus oedipus). Psychol. Sci. 18(12), 1063–1068 (2007)CrossRefGoogle Scholar
  46. 46.
    Stöckel, T., Hughes, C.L., Schack, T.: Representation of grasp postures and anticipatory motor planning in children. Psychol. Res. 76(6), 768–776 (2012)CrossRefGoogle Scholar
  47. 47.
    Thibaut, J.-P., Toussaint, L.: Developing motor planning over ages. J. Exp. Child Psychol. 105(1–2), 116–129 (2010)CrossRefGoogle Scholar
  48. 48.
    Weigelt, M., Schack, T.: The development of end-state comfort planning in preschool children. Exp. Psychol. 57(6), 476–482 (2010)CrossRefGoogle Scholar
  49. 49.
    Wunsch, K., et al.: A systematic review of the end-state comfort effect in normally developing children and children with developmental disorders. J. Motor Learn. Dev. 1(3), 59–76 (2013)MathSciNetGoogle Scholar
  50. 50.
    Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Netw. 11(7), 1317–1329 (1998)CrossRefGoogle Scholar
  51. 51.
    Konczak, J., Abbruzzese, G.: Focal Dystonia in musicians: Linking motor symptoms to somatosensory dysfunction. Front. Human Neurosci. 7, 297 (2013). doi:  10.3389/fnhum.2013.00297
  52. 52.
    Wolpert, D.M., Doya, K., Kawato, M.: A unifying computational framework for motor control and social interaction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358(1431), 593–602 (2003)CrossRefGoogle Scholar
  53. 53.
    Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment. PLoS Comput. Biol. 4(11), e1000220 (2008)Google Scholar
  54. 54.
    Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)CrossRefGoogle Scholar
  55. 55.
    Jaeger, H.: Controlling Recurrent Neural Networks by Conceptors. arXiv:1403.3369 (2014)Google Scholar
  56. 56.
    Schilling, M., Paskarbeit, J., Hoinville, T., Hüffmeier, A., Schneider, A., Schmitz, J., Cruse, H.: A hexapod walker using a heterarchical architecture for action selection. Front. Comput. Neurosci. 7 (2013). doi: 10.3389/fncom.2013.00126
  57. 57.
    Cruse, H., Schilling, M.: How and to what end may consciousness contribute to action? Attributing properties of consciousness to an embodied, minimally cognitive artificial neural network. Front. Psychol. 4, 324 (2013)Google Scholar
  58. 58.
    Schilling, M., Hoinville, T., Schmitz, J., Cruse, H.: Walknet, a bio-inspired controller for hexapod walking. Biol. Cybern. 107, 397–419 (2013). doi: 10.1007/s00422-013-0563-5 CrossRefMathSciNetGoogle Scholar
  59. 59.
    Schilling, M., Cruse, H.: What’s next: recruitment of a grounded predictive body model for planning a robot’s actions. Front. Psychol. 3, 383 (2012)Google Scholar
  60. 60.
    Gienger, M., et al.: Optimization of fluent approach and grasp motions. In: 8th IEEE-RAS International Conference on Humanoid Robots 2008. Humanoids (2008)Google Scholar
  61. 61.
    Schack, T., Ritter, H.: Representation and learning in motor action—bridges between experimental research and cognitive robotics. New Ideas Psychol. 31(3), 258–269 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Thomas Schack
    • 1
    • 2
    • 3
    Email author
  • Christoph Schütz
    • 1
  • André Frank Krause
    • 1
    • 2
  • Christian Seegelke
    • 1
    • 2
  1. 1.Faculty of Psychology and Sport SciencesBielefeld UniversityBielefeldGermany
  2. 2.Cognitive Interaction TechnologyCenter of Excellence, Bielefeld UniversityBielefeldGermany
  3. 3.CoR-Lab, Research Institute for Cognition and RoboticsBielefeld UniversityBielefeldGermany

Personalised recommendations