Liquid-Liquid Flows in Micro and Small Channels: Hydrodynamics and Pressure Drop

  • Dimitrios A. TsaoulidisEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter the hydrodynamic characteristics and the pressure drop of liquid-liquid flows in small circular channels are presented. Two liquid-liquid flow systems are considered for the experiments, i.e. ionic liquid-deionised water, and TBP/ionic liquid (30 % v/v)-nitric acid solutions. The channels tested were made either of glass or Teflon. Channel sizes varied in internal diameter from 0.2 to 2 mm.


Ionic Liquid Pressure Drop Plug Flow Annular Flow Flow Rate Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aussillous, P., & Quere, D. (2002). Bubbles creeping in a viscous liquid along a slightly inclined plane. Europhysics Letters, 59, 370–376.CrossRefGoogle Scholar
  2. Aussillous, P. & Quéré, D. (2000). Quick deposition of a fluid on the wall of a tube. Physics of Fluids (1994--present), 12, 2367–2371.Google Scholar
  3. Bico, J., & Quere, D. (2000). Liquid trains in a tube. EPL (Europhysics Letters), 51, 546.CrossRefGoogle Scholar
  4. Bretherton, F. P. (1961). The motion of long bubbles in tubes. Journal of Fluid Mechanics, 10, 166–188.CrossRefGoogle Scholar
  5. Christopher, G. F., Noharuddin, N. N., Taylor, J. A., & Anna, S. L. (2008). Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 78, 036317.CrossRefGoogle Scholar
  6. Cristini, V., & Tan, Y. C. (2004). Theory and numerical simulation of droplet dynamics in complex flows–a review. Lab on a Chip, 4, 257–264.CrossRefGoogle Scholar
  7. de Menech, M., Garstecki, P., Jousse, F., & Stone, H. (2008). Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 595, 141–161.CrossRefGoogle Scholar
  8. Garstecki, P., Fuerstman, M. J., Stone, H. A., & Whitesides, G. M. (2006). Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab on a Chip, 6, 437–446.CrossRefGoogle Scholar
  9. Ghaini, A., Kashid, M., & Agar, D. (2010). Effective interfacial area for mass transfer in the liquid–liquid slug flow capillary microreactors. Chemical Engineering and Processing: Process Intensification, 49, 358–366.CrossRefGoogle Scholar
  10. Gupta, R., Leung, S. S., Manica, R., Fletcher, D. F., & Haynes, B. S. (2013). Hydrodynamics of liquid–liquid Taylor flow in microchannels. Chemical Engineering Science, 92, 180–189.CrossRefGoogle Scholar
  11. Han, Y., & Shikazono, N. (2009). Measurement of the liquid film thickness in micro tube slug flow. International Journal of Heat and Fluid Flow, 30, 842–853.CrossRefGoogle Scholar
  12. Irandoust, S., & Andersson, B. (1989). Liquid film in Taylor flow through a capillary. Industrial and Engineering Chemistry Research, 28, 1684–1688.CrossRefGoogle Scholar
  13. Jovanović, J., Zhou, W., Rebrov, E. V., Nijhuis, T., Hessel, V., & Schouten, J. C. (2011). Liquid–liquid slug flow: Hydrodynamics and pressure drop. Chemical Engineering Science, 66, 42–54.CrossRefGoogle Scholar
  14. Kashid, M. N., & Agar, D. W. (2007). Hydrodynamics of liquid–liquid slug flow capillary microreactor: Flow regimes, slug size and pressure drop. Chemical Engineering Journal, 131, 1–13.CrossRefGoogle Scholar
  15. Kashid, M. N., Gerlach, I., Goetz, S., Franzke, J., Acker, J., Platte, F., et al. (2005). Internal circulation within the liquid slugs of a liquid-liquid slug-flow capillary microreactor. Industrial and Engineering Chemistry Research, 44, 5003–5010.CrossRefGoogle Scholar
  16. Kashid, M. N., Renken, A., & Kiwi-Minsker, L. (2011). Gas–liquid and liquid–liquid mass transfer in microstructured reactors. Chemical Engineering Science, 66, 3876–3897.CrossRefGoogle Scholar
  17. Kreutzer, M. T., Kapteijn, F., Moulijn, J. A., & Heiszwolf, J. J. (2005). Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels. Chemical Engineering Science, 60, 5895–5916.CrossRefGoogle Scholar
  18. Laborie, S., Cabassud, C., Durand-Bourlier, L., & Laine, J. (1999). Characterisation of gas–liquid two-phase flow inside capillaries. Chemical Engineering Science, 54, 5723–5735.CrossRefGoogle Scholar
  19. Lac, E., & Sherwood, J. (2009). Motion of a drop along the centreline of a capillary in a pressure-driven flow. Journal of Fluid Mechanics, 640, 27–54.CrossRefGoogle Scholar
  20. Leclerc, A., Philippe, R., Houzelot, V., Schweich, D., & de Bellefon, C. (2010). Gas–liquid Taylor flow in square micro-channels: New inlet geometries and interfacial area tuning. Chemical Engineering Journal, 165, 290–300.CrossRefGoogle Scholar
  21. Liu, H., & Zhang, Y. (2009). Droplet formation in a T-shaped microfluidic junction. Journal of Applied Physics, 106, 034906.CrossRefGoogle Scholar
  22. Liu, H., Vandu, C. O., & Krishna, R. (2005). Hydrodynamics of Taylor flow in vertical capillaries: Flow regimes, bubble rise velocity, liquid slug length, and pressure drop. Industrial and Engineering Chemistry Research, 44, 4884–4897.CrossRefGoogle Scholar
  23. Mac Giolla Eain, M., Egan, V. & Punch, J. (2013). Film thickness measurements in liquid–liquid slug flow regimes. International Journal of Heat and Fluid Flow, 44, 515–523.Google Scholar
  24. Qian, D., & Lawal, A. (2006). Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel. Chemical Engineering Science, 61, 7609–7625.CrossRefGoogle Scholar
  25. Salim, A., Fourar, M., Pironon, J., & Sausse, J. (2008). Oil–water two-phase flow in microchannels: Flow patterns and pressure drop measurements. The Canadian Journal of Chemical Engineering, 86, 978–988.CrossRefGoogle Scholar
  26. Taylor, G. I. (1961). Deposition of a viscous fluid on the wall of a tube. Journal of Fluid Mechanics, 10, 161–165.CrossRefGoogle Scholar
  27. Thorsen, T., Roberts, R. W., Arnold, F. H., & Quake, S. R. (2001). Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters, 86, 4163–4166.CrossRefGoogle Scholar
  28. van Steijn, V., Kreutzer, M. T., & Kleijn, C. R. (2007). μ-PIV study of the formation of segmented flow in microfluidic T-junctions. Chemical Engineering Science, 62, 7505–7514.CrossRefGoogle Scholar
  29. Xu, J. H., Li, S. W., Tan, J., & Luo, G. S. (2008). Correlations of droplet formation in T-junction microfluidic devices: From squeezing to dripping. Microfluidics and Nanofluidics, 5, 711–717.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentUniversity College LondonLondonUK

Personalised recommendations