Skip to main content

Data Processing Tools

  • Chapter
  • First Online:
Principles of Applied Remote Sensing

Abstract

Techniques that are conventionally used to process remotely sensed data into geospatial input or output products (e.g., classified maps) for further analysis and application are discussed in this chapter. This chapter focuses on the processing of moderate-spatial-resolution, multispectral digital image data, such as the imagery captured by the Landsat Enhanced Thematic Mapper (ETM)+ or Landsat Operational Land Imager (OLI) sensors. This type of data is still utilized in a large percentage of applied remote sensing efforts, especially in terrestrial environments. In the latter portion of the chapter, we briefly cover the processing of other categories of remotely sensed data such as hyperspectral and Light Detection and Ranging (LiDAR) data, which require specialized processing approaches. Readers interested in learning more about the processing of these other data types should consult the suggested reading list at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aaronoff, S.G. 1985. The minimum accuracy value as an index of classification accuracy. Photogrammetric Engineering and Remote Sensing. 57(5):501–509.

    Google Scholar 

  • Al Fugara, A.M., B. Pradhan, and T. A. Mohamed. 2009. Improvement of land-use classification using object-oriented and fuzzy logic approach. Applied Geomatics. 1:111–120.

    Article  Google Scholar 

  • Alparone, L., B. Alazzi, S. Baronti, A. Garzelli, F. Nencini, and M. Selva. 2008. Multispectral and panchromatic data fusion assessment without reference. Photogrammetric Engineering and Remote Sensing. 74(2):193–200.

    Article  Google Scholar 

  • Anderson, J.R., E. Hardy, J. Roach, and R. Witmer. 1976. A Land Use and Land Cover Classification System for Use with Remote Sensing Data. Washington, DC: US Geological Survey Professional Paper 964. 28 p.

    Google Scholar 

  • Arnold, C. and C. Gibbons. 1996. Impervious surface coverage: The emergence of a key environmental indicator. Journal of American Planning Association. 62:243–258.

    Article  Google Scholar 

  • Awrangjeb, M., M. Ravanbakhsh, and C.S. Fraser. 2010. Automatic detection of residential buildings using LIDAR data and multispectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing. 65(5):457–467.

    Google Scholar 

  • Blaisdell, E.A. 1993. Statistics in Practice. New York: Harcourt Brace Jovanovich. 653 p.

    Google Scholar 

  • Blaschke, T. 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing. 65:2–16.

    Article  Google Scholar 

  • Brando, V.E. and A.G. Dekker. 2003. Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Transactions on Geoscience and Remote Sensing. 41:1378–1387.

    Article  Google Scholar 

  • Cablk, M.E. and T.B. Minor. 2003. Detecting and discriminating impervious cover with high-resolution IKONOS data using principal component analysis and morphological operators. International Journal of Remote Sensing. 24:4627–4645.

    Article  Google Scholar 

  • Cakir, H.I. and S. Khorram. 2008. Pixel level fusion of panchromatic and multispectral images based on correspondence analysis. Photogrammetric Engineering and Remote Sensing. 74(2):183–192.

    Article  Google Scholar 

  • Cakir, H.I., S. Khorram, X.L. Dai, and P. de Fraipont. 1999. Merging SPOT XS and SAR imagery using the wavelet transform method to improve classification accuracy. In: Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium (IGARSS), 28 June-2 July 1999, Hamburg, Germany, pp. 71–73.

    Google Scholar 

  • Cakir, H. I., S. Khorram, and S.A.C. Nelson. 2006. Correspondence analysis approach for detecting land use land cover changes. Remote Sensing of Environment. 102:306–317.

    Article  Google Scholar 

  • Carleer, A.P., O. Debeir, and E. Wolff. 2005. Assessment of very high spatial resolution satellite image segmentations. Photogrammetric Engineering and Remote Sensing. 71:1285–1294.

    Article  Google Scholar 

  • Carleer, A. and E. Wolff. 2004. Exploitation of very high resolution satellite data for tree species identification. Photogrammetric Engineering and Remote Sensing. 70:135–140.

    Article  Google Scholar 

  • Celik, T. 2009. Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geoscience and Remote Sensing Letters. 6(4):772–776.

    Article  Google Scholar 

  • Cerny, V. 1985. A thermodynamic approach to the traveling salesman problem: An efficient simulation. Journal of Optimization Theory and Applications 45: 41–51.

    Google Scholar 

  • Chavez, P.S. and A.Y. Kwarteng. 1989. Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis. Photogrammetric Engineering and Remote Sensing. 55(3):339–348.

    Google Scholar 

  • Chavez, P.S., S.C. Sides, and J.A. Anderson. 1991. Comparison of three different methods to merge multiresolution and multispectral: Landsat TM and SPOT Panchromatic. Photogrammetric Engineering and Remote Sensing. 57(3):295–303.

    Google Scholar 

  • Chen, Q. 2007. Airborne Lidar data processing and information extraction. Photogrammetric Engineering and Remote Sensing. 73(2):109–112.

    Article  Google Scholar 

  • Clark, D.B., C.S. Castro, L.D.A. Alvarado, and J.M. Read. 2004. Quantifying mortality of tropical rain forest trees using high-spatial-resolution satellite data. Ecology Letters. 7:52–59.

    Article  Google Scholar 

  • Cohen, J.A. 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurements. 20:37–46.

    Article  Google Scholar 

  • Congalton, R.G. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35–46.

    Google Scholar 

  • Congalton, R.G., R.G. Oderwald, and R.A. Mead. 1983. Assessing Landsat classification accuracy using discrete multivariate statistical techniques. Photogrammetric Engineering and Remote Sensing. 49(12):1671–1678.

    Google Scholar 

  • Congalton, R.G., and K. Green, Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. (Boca Raton, Lewis Publishers 1999), p. 137.

    Google Scholar 

  • Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of Wetlands and Deepwater Habitats of the United States. Washington: U.S. Fish and Wildlife Service, FWS/OBS-79/31. Pp. 103.

    Google Scholar 

  • Dai, X.L. and S. Khorram. 1998. The effects of image misregistration on the accuracy of remotely sensed change detection. IEEE Transactions on Geoscience and Remote Sensing. 36:1566–1577.

    Article  Google Scholar 

  • Dai, X.L. and S. Khorram. 1999. Data fusion using artificial neural networks: a case study on multitemporal change analysis. Computers, Environment and Urban Systems. 23:19–31.

    Article  Google Scholar 

  • Dare, P.M. 2005. Shadow analysis in high-resolution satellite imagery of urban areas. Photogrammetric Engineering and Remote Sensing. 71:169–177.

    Article  Google Scholar 

  • Das, A. and B.K. Chakrabarti, eds. 2005. Quantum Annealing and Related Optimization Methods. Lecture Notes in Physics 679. Berlin: Springer.

    Google Scholar 

  • De Vincente, J., J. Lanchares, and R. Hermida. 2003. Placement by thermodynamic simulated annealing. Physics Letters A 317: 415–423.

    Google Scholar 

  • Elvidge, C.D., J.B. Dietz, R. Berkelmans, S. Andrefouet, W. Skirving, A.E. Strong, and B.T. Tuttle. 2004. Satellite observation of Keppel Islands (Great Barrier Reef) 2002 coral bleaching using IKONOS data. Coral Reefs. 23:123–132.

    Article  Google Scholar 

  • Fisher, J. and S. Goetz. 2001. Considerations in the use of high spatial resolution imagery: an applications research assessment. In: Proceedings of the American Society for Photogrammetry and Remote Sensing (ASPRS) Conference, April 23–27, 2001, St. Louis, MO.

    Google Scholar 

  • Fisher, P.F. and S. Pathirana. 1990. The evaluation of fuzzy membership of land cover classes in the suburban zone. Remote Sensing of Environment. 34:121–132.

    Article  Google Scholar 

  • Fonseca, L.M.G. and B.S. Manjunath. 1996. Registration techniques for multisensory remotely sensed imagery. Photogrammetric Engineering and Remote Sensing. 62:1049–1056.

    Google Scholar 

  • Foody, G. M. 2002. Status of land cover classification accuracy assessment, Remote Sensing of Environment. 80:185–201.

    Article  Google Scholar 

  • Forster, B.C. 1984. Derivation of atmospheric correction procedures for Landsat MSS with particular reference to urban data. International Journal of Remote Sensing. 5:799–817.

    Article  Google Scholar 

  • Friedl, M.A. and C.E. Brodley. 1997. Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment. 61:399–409.

    Google Scholar 

  • Galvao, L.S., A.R. Formaggio, and D.A. Tisot. 2005. Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 hyperion data. Remote Sensing of Environment. 94:523–534.

    Article  Google Scholar 

  • Gao, B.C., M.J. Montes, C.O. Davis, and A.F.H. Goetz. 2009. Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sensing of Environment. 113:S17–S24.

    Article  Google Scholar 

  • Geman, S. and D. Geman. 1984. Stochastic relaxation, Gibbs’ distribution and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6: 721–741.

    Google Scholar 

  • Goetz, S., R. Wright, A. Smith, E. Zinecker, and E. Schaub. 2003. IKONOS imagery for resource management: Tree cover, impervious surfaces, and riparian buffer analyses in the mid-Atlantic region. Remote Sensing of Environment. 88:195–208.

    Article  Google Scholar 

  • Goodchild, M.F., G.Q. Sun, and S. Yang. 1992. Development and test of an error model for categorical data. International Journal of Geographical Information Systems. 6(2):87–104.

    Article  Google Scholar 

  • Goodenough, D.G., Goldberg, M., Plunkett G., and, J. Zelek, 1987. An expert system for remote sensing. IEEE. Trans. Geosci. Remote Sens. GE-25, 349–359.

    Google Scholar 

  • Goodenough, D.G., A. Dyk, O. Niemann, J.S. Pearlman, H. Chen, T. Han, M. Murdoch, and C. West. 2003. Processing Hyperion and ALI for forest classification. IEEE Transactions on Geoscience and Remote Sensing. 41:1321–1331.

    Article  Google Scholar 

  • Gross, J.E., Goetz, S.J., Cihlar, J., 2009. Application of remote sensing to parks and protected area monitoring: introduction to the special issue. Remote Sensing of Environment. 113(7):1343–1345.

    Article  Google Scholar 

  • Hagen, A. 2003. Fuzzy set approach to assessing similarity of categorical maps. International Journal of Geographical Information Science. 17:235–249.

    Article  Google Scholar 

  • Haykin, S. 1994. Neural Networks: A Comprehensive Foundation. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Henebry, G.M. 1993. Detecting change in grasslands using measures of spatial dependence with Landsat TM Data. Remote Sensing of Environment. 46:223–234.

    Article  Google Scholar 

  • Herold, M., D.A. Roberts, M.E. Gardner, and P.E. Dennison. 2004. Spectrometry for urban area remote sensing—Development and analysis of a spectral library from 350 to 2400 nm. Remote Sensing of Environment. 91:304–319.

    Article  Google Scholar 

  • Herold, M., X.H. Liu, and K.C. Clarke. 2003. Spatial metrics and image texture for mapping urban land use. Photogrammetric Engineering and Remote Sensing. 69:991–1001.

    Article  Google Scholar 

  • Hester, D.B. 2008. Land Cover Mapping and Change Detection in Urban Watersheds Using QuickBird High Spatial Resolution Satellite Imagery. Ph. D. Dissertation, North Carolina State University, 148p.

    Google Scholar 

  • Hester, D.B., H.I. Cakir, S.A.C. Nelson, and S. Khorram. 2008. Per-pixel classification of high spatial resolution satellite imagery for urban land cover mapping. Photogrammetric Engineering and Remote Sensing. 74:463–471.

    Article  Google Scholar 

  • Hester, D.B., S.A.C. Nelson, H.I. Cakir, S. Khorram, and H.M. Cheshire. 2010. High-resolution land cover change detection based on fuzzy uncertainty analysis and change reasoning. International Journal of Remote Sensing. 31:455–475.

    Article  Google Scholar 

  • Hodgson, M.E., J.R. Jensen, L. Schmidt, S. Schill and B. Davis. 2003. An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs. Remote Sensing of Environment. 84(2):295–308.

    Article  Google Scholar 

  • Holmgren, J., Å. Persson, and U. Söderman. 2008. Species identification of individual trees by combining high resolution LiDAR data with multi-spectral images. International Journal of Remote Sensing. 29(5):1537–1552.

    Article  Google Scholar 

  • Homer, C., C.Q. Huang, L.M. Yang, B. Wylie, and M. Coan. 2004. Development of a 2001 National Land-Cover Database for the United States. Photogrammetric Engineering and Remote Sensing. 70:829–840.

    Article  Google Scholar 

  • Hord, R.M. 1982. Digital Image Processing of Remotely-Sensed Data. New York: Academic Press. Pp. 256.

    Google Scholar 

  • Huete, A., K. Didan, T. Miura, E.P. Rodriguez, X. Gao, and L.G. Ferreira. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment. 83:195–213.

    Article  Google Scholar 

  • Jain, A.K. 1989. Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice Hall, pp. 418–421.

    Google Scholar 

  • Jensen, J.R. 2005. Introductory Digital Image Processing, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall. 316 p.

    Google Scholar 

  • Jensen, R.R., P.J. Hardin, and G. Yu. 2009. Artificial neural networks and remote sensing. Geography Compass. 3(2):630–646.

    Article  Google Scholar 

  • Jiang, Z., A.R. Huete, K. Didan, and T. Miura. 2008. Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment. 112:3833–3845.

    Article  Google Scholar 

  • Johansen, K., and S. Phinn. 2006. Mapping structural parameters and species composition of riparian vegetation using IKONOS and Landsat ETM plus data in Australian tropical savannahs. Photogrammetric Engineering and Remote Sensing. 72:71–80.

    Article  Google Scholar 

  • Kennedy, R.E., P.A. Townsend, J.E. Gross. 2009. Remote sensing change detection tools for natural resource managers: understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote Sensing of Environment. 113(7):1382–1396.

    Article  Google Scholar 

  • Khorram, S. 2015, Landsat 8 Images of South San Francisco Bay, personal communications.

    Google Scholar 

  • Khorram, S., S.A.C. Nelson, H.I. Cakir, and C.F. van der Wiele. 2013a. Digital image acquisition, preprocessing, and data reduction, in Handbook of Satellite Applications, 2nd ed. Editors Pelton, J. N., Madry, S., and Camacho-Lara, S. Springer-Verlag. New York City, New York, p. 250. ISBN: 978-1-4419-7670-3

    Google Scholar 

  • Khorram, S., S.A.C. Nelson, H.I. Cakir, and C.F. van der Wiele. 2013b. Digital image processing, post- processing, and data integration, Handbook of Satellite Applications, 1st ed., ed. by J.N. Pelton, S. Madry, S. Camacho-Lara (Springer-Verlag, New York).

    Google Scholar 

  • Khorram, S., C.F. van der Wiele, and H. Yuan. 2011. Development of a Modified Neural Network Based Land Cover Classification System Using Automated Data Selector and Multiresolution Remotely-Sensed Data. Journal of Goecarto International. 26(6):435–457.

    Article  Google Scholar 

  • Khorram, S. 1985. Development of water quality models applicable throughout the entire San Francisco Bay and delta. Photogrammetric Engineering and Remote Sensing. 51(1):53–62.

    Google Scholar 

  • Khorram, S., S.A.C. Nelson, H.I. Cakir, D.B. Hester, and H.M. Cheshire. 2005. Cost effective assessment of land use practices influencing erosion and sediment yield, Technical report, Center for Earth Observation, North Carolina State University, submitted to North Carolina Water Resources research Institute, 46 p.

    Google Scholar 

  • Khorram, S. 1982. Coastwatch: water quality mapping of the entire San Francisco Bay and delta from Landsat Multispectral Scanner data. R.N. Colwell, PI, Space Sciences Laboratory, Series 23, Issue 6, University of California, Berkeley. Pp. 34.

    Google Scholar 

  • Khorram, S., G.S. Biging, N.R. Chrisman, D.R. Colby, R.G. Congalton, J.E. Dobson, R.L. Ferguson, M.F. Goodchild, J.R. Jensen, and T.H. Mace. 1999. Accuracy Assessment of Remote Sensing-Derived Change Detection. Bethesda, MD: American Society of Photogrammetry and Remote Sensing Monograph. Pp. 64.

    Google Scholar 

  • Khorram, S., G.S. Biging, N.R. Chrisman, D.R. Colby, R.G. Congalton, J.E. Dobson, R.L. Ferguson, M.F. Goodchild, J.R. Jensen, and T.H. Mace. 1999b. “Accuracy Assessment of Remote Sensing-Derived Change Detection,” American Society of Photogrammetry, 78 p.

    Google Scholar 

  • Khorram, S., H.M. Cheshire, X. Dai, and J. Morisette. 1996. Land cover inventory and change detection of coastal North Carolina using Landsat Thematic Mapper data. In: Proceedings, ASPRS/ACSM—Annual Convention and Exposition, Vol. 1: Remote Sensing and Photogrammetry. pp. 245–250.

    Google Scholar 

  • Khorram, S., H.M. Cheshire, K. Siderellis, and Z. Nagy. 1992. Mapping and GIS Development of Land Use/Land Cover Categories for the Albemarle-Pamlico Drainage Basin. North Carolina Department of Environmental, Health, and Natural Resources, No. 91–08. Pp. 55.

    Google Scholar 

  • Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi. 1983. Optimization by simulated annealing. Science 220: 671–680.

    Google Scholar 

  • Kutser, T., D. Pierson, L. Tranvik, A. Reinart, S. Sobek, and K. Kallio. 2005. Using satellite remote sensing to estimate the colored dissolved organic matter absorption coefficient in lakes. Ecosystems. 8:709–720.

    Article  Google Scholar 

  • Lambin, E.F., and D. Ehrlich. 1996. The surface temperature-vegetation index space for land cover and land-cover change analysis. International Journal of Remote Sensing. 17:463–487.

    Article  Google Scholar 

  • Lee, D.H., K.M. Lee, and S.U. Lee. 2008. Fusion of lidar and imagery for reliable building extraction. Photogrammetric Engineering and Remote Sensing. 74(2):215–225.

    Article  Google Scholar 

  • Lillesand, T., R. Kiefer, and J. Chipman. 2008. Remote Sensing and Image Interpretation, 6th edition. New York: John Wiley and Sons. Pp. 763

    Google Scholar 

  • Lu, D., P. Mausel, E. Brondizio, and E. Moran. 2004. Change detection techniques. International Journal of Remote Sensing. 25:2365–2407.

    Article  Google Scholar 

  • Lunetta, R. L. and J.G. Lyons, eds. 2003. Geospatial Data Accuracy Assessment. Las Vegas: US Environmental Protection Agency, Report No. EPA/600/R-03/064. Pp. 335.

    Google Scholar 

  • Maktav, D., F. Erbek, and C. Jurgens. 2005. Remote sensing of urban areas. International Journal of Remote Sensing. 26:655–659.

    Article  Google Scholar 

  • Mausel, P.W. and J.K. Lee. 1990. Optimum band selection for supervised classification of multispectral data. Photogrammetric Engineering and Remote Sensing. 56:55–60.

    Google Scholar 

  • McCauley, S., and S. Goetz. 2004. Mapping residential density patterns using multi-temporal Landsat data and a decision-tree classifier. International Journal of Remote Sensing. 25:1077–1094.

    Article  Google Scholar 

  • McIver, D.K. and M.A. Friedl. 2002. Using prior probabilities in decision-tree classification of remotely sensed data. Remote Sensing of Environment. 81:253–261.

    Article  Google Scholar 

  • Meng, X., L. Wang, J.L. Silván-Cárdenas, and N. Currit. 2009. A multi-directional ground filtering algorithm for airborne LIDAR. ISPRS Journal of Photogrammetry and Remote Sensing 64(1):117–124.

    Article  Google Scholar 

  • Miller, J.E., S.A.C. Nelson, and G.R. Hess. 2009. A new object-oriented method of impervious surface classification using Feature Analyst. The Professional Geographer. 61:250–264.

    Article  Google Scholar 

  • Miller, S.N., S.R. Shrestha, and D. Semmens. 2004. Semi-automated Extraction and Validation of Channel Morphology from LIDAR and IFSAR Terrain Data. In; Proceedings of the ASPRS Annual Conference, Denver, CO.

    Google Scholar 

  • Mitri, G. H. and I. Z. Gitas. 2004. A performance evaluation of a burned area object-based classification model when applied to topographically and nontopographically connected TM imagery. International Journal of Remote Sensing. 25:2863–2870.

    Article  Google Scholar 

  • Mohanty, K.K. and T.J. Majumdar. 1996. An artificial neural network (ANN) based software package for classification of remotely sensed data. Computers & Geosciences. 22:81–87.

    Article  Google Scholar 

  • Morisette, J.T. and S. Khorram. 1998. Exact binomial confidence interval for proportions. Photogrammetric Engineering and Remote Sensing 64(4):281–283.

    Google Scholar 

  • Morisette, J.T., S. Khorram, and T. Mace. 1999. Land-cover change detection enhanced with generalized linear models. International Journal of Remote Sensing. 20:2703–2721.

    Article  Google Scholar 

  • Muchoney, D.M. and B.N. Haack. 1994. Change detection for monitoring forest defoliation. Photogrammetric Engineering and Remote Sensing. 60:1243–1251.

    Google Scholar 

  • National Aeronautics and Space Administration (NASA). 2006. ASTER Instrument Characteristics [web site]. http://asterweb.jpl.nasa.gov/characteristics.asp (last accessed 27 May 2011).

  • National Oceanic and Atmospheric Administration (NOAA). 2004. Coastal Change Analysis Program (C-CAP) [web page]. Charleston: NOAA Coastal Services Center. http://www.csc.noaa-gov/crs/lca/ccap_program.html

  • Nelson, S.A.C., K.S. Cheruvelil, and P.A. Soranno. 2006. Remote sensing of freshwater macrophytes using Landsat TM and the influence of water clarity. Aquatic Botany. 85:289–298.

    Article  Google Scholar 

  • Nelson, S.A.C., P. A. Soranno, and J. Qi. 2002. Land cover change in the Upper Barataria Basin Estuary, Louisiana, from 1972 to 1992: increases in wetland area. Environmental Management. 29:716–727.

    Article  Google Scholar 

  • Núñez, J., X. Otazu, O. Fors, A. Prades, V. Palà, and R. Arbiol. 1999. Multiresolution-based image fusion with additive wavelet decomposition. IEEE Transactions on Geoscience and Remote Sensing. 37(3):1204–1211.

    Article  Google Scholar 

  • Paine, D.P., and J.D. Kiser. 2003. Aerial Photography and Image Interpretation (2nd ed.). John Wiley, inc. New York. 632 pages.

    Google Scholar 

  • Pal, M. and P.M. Mather. 2003. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment. 86:554–565.

    Article  Google Scholar 

  • Pang, X., L. Chen, and W. Chen. 2006. Application of neural network based on simulated annealing to classification of remote sensing image. In: Proceedings of the 6th World Congress on Intelligent Control and Automation, 21–23 June 2006, Dalian, China, 2874–2877.

    Google Scholar 

  • Philipson, P., and T. Lindell. 2003. Can coral reefs be monitored from space? Ambio. 32:586–593.

    Article  Google Scholar 

  • Pohl, C. and J.L Van Genderen. 1998. Multisensor image fusion in remote sensing: concepts, methods and applications. International Journal of Remote Sensing. 19(5):823–854.

    Article  Google Scholar 

  • Qiu, F. and J.R. Jensen. 2004. Opening the black box of neural networks for remote sensing image classification. International Journal of Remote Sensing. 9:1749–1768.

    Article  Google Scholar 

  • Raber, G. 2003. The Effect of Lidar Posting Density on DEM Accuracy and Flood Extent Delineation. In Proceedings of the UCGIS Summer Assembly 2003, Pacific Grove, California.

    Google Scholar 

  • Ramsey, E., A. Rangoonwala, G. Nelson, and R. Ehrlich. 2005. Mapping the invasive species, Chinese tallow, with EO1 satellite Hyperion hyperspectral image data and relating tallow occurrences to a classified Landsat Thematic Mapper land cover map. International Journal of Remote Sensing. 26:1637–1657.

    Article  Google Scholar 

  • Read, J., D. Clark, E. Venticinque, and M. Moreira. 2003. Application of merged 1-m and 4-m resolution satellite data to research and management in tropical forests. Journal of Applied Ecology. 40:592–600.

    Article  Google Scholar 

  • Read, J.M. and N.S.N. Lam. 2002. Spatial methods for characterising land cover and detecting land-cover changes for the tropics. International Journal of Remote Sensing. 23:2457–2474.

    Article  Google Scholar 

  • Rocha, A.V. and G.R. Shaver. 2009. Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agricultural and Forest Meteorology. 149:1560–1563.

    Article  Google Scholar 

  • Rogan, J. and D.M. Chen. 2004. Remote sensing technology for mapping and monitoring land-cover and land-use change. Progress in Planning. 61:301–325.

    Article  Google Scholar 

  • Rottensteiner, F. 2003. Automatic generation of high-quality building models from lidar data. IEEE Computer Graphics and Applications. 23(6):42–50.

    Article  Google Scholar 

  • Sabins, M.J. 1987. Convergence and consistency of fuzzy c-means/ISODATA algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence. 9:661–668.

    Article  Google Scholar 

  • Sawaya, K., L. Olmanson, N. Heinert, P. Brezonik, and M. Bauer. 2003. Extending satellite remote sensing to local scales: land and water resource monitoring using high-resolution imagery. Remote Sensing of Environment. 88:144–156.

    Article  Google Scholar 

  • Schnur, M.T., H. Xie, and X. Wang. 2010. Estimating root zone soil moisture at distant sites using MODIS NDVI and EVI in a semi-arid region of southwestern US. Ecological Informatics. 5:400–409.

    Article  Google Scholar 

  • Schott, J.R., C. Salvaggio, and W.J. Volchok. 1988. Radiometric scene normalization using pseudoinvariant features. Remote Sensing of Environment. 26:1–16.

    Article  Google Scholar 

  • Seelan, S.K., S. Laguette, G.M. Casady, and G.A. Seielstad. 2003. Remote sensing applications for precision agriculture: A learning community approach. Remote Sensing of Environment. 88:157–169.

    Article  Google Scholar 

  • Shackelford, A.K. and C.H. Davis. 2003. A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban area. IEEE Transactions on Geoscience and Remote Sensing. 41:2354–2363.

    Article  Google Scholar 

  • Sidle, J.G., D.H. Johnson, B.R. Euliss, and M. Tooze. 2002. Monitoring black-tailed prairie dog colonies with high-resolution satellite imagery. Wildlife Society Bulletin. 30:405–411.

    Google Scholar 

  • Simone, G., A. Farina, F.C. Morabito, S.B. Serpico, and L. Bruzzone. 2002. Image fusion techniques for remote sensing applications. Information Fusion. 3:3–15.

    Article  Google Scholar 

  • Sithole, G. and G. Vosselman. 2004. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing. 59:85–101.

    Article  Google Scholar 

  • Solberg, A.H.S., T. Taxt, and A.K. Jain. 1994. Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images. IEEE Transactions on Geoscience and Remote Sensing. 32(4):768–778.

    Article  Google Scholar 

  • Sohn, G. and I. Dowman. 2007. Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS Journal of Photogrammetry and Remote Sensing. 62:43–63.

    Article  Google Scholar 

  • South, S., J. Qi, and D.P. Lusch. 2004. Optimal classification methods for mapping agricultural tillage practices. Remote Sensing of Environment. 91:90–97.

    Article  Google Scholar 

  • Stefanov, W.L., M.S. Ramsey and P.R. Christensen. 2001. Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers. Remote Sensing of Environment. 77:173–185.

    Article  Google Scholar 

  • Stehman, S.V. 2001. Statistical rigor and practical utility in thematic map accuracy assessment. Photogrammetric Engineering and Remote Sensing. 67:727–734.

    Google Scholar 

  • Stone, B. 2004. Paving over paradise: how land use regulations promote residential imperviousness. Landscape and Urban Planning. 69:101–113.

    Article  Google Scholar 

  • Story, M. and R.G. Congalton. 1986. Accuracy assessment: a user’s perspective. Photogrammetric Engineering and Remote Sensing. 52: 397–399.

    Google Scholar 

  • Thomas, N., C. Hendrix, and R. Congalton. 2003. A comparison of urban mapping methods using high-resolution digital imagery. Photogrammetric Engineering and Remote Sensing. 69:963–972.

    Article  Google Scholar 

  • Tou, J.T., and R.C. Gonzalez. 1977. Pattern Recognition Principles. Reading, MA: Addison-Wesley, pp. 377.

    Google Scholar 

  • Townsend, P.A., Lookingbill, T.R., Kingdon, C.C., et al., 2009. Spatial pattern analysis for monitoring protected areas. Remote Sensing of Environment. 113 (7), 1410–1420.

    Article  Google Scholar 

  • Treuhaft, R.N., B.E. Law, and G.P. Asner. 2004. Forest attributes from radar interferometirc structure and its fusion with optical remote sensing. BioScience. 54(6):561–571.

    Article  Google Scholar 

  • Turner, R.E. and M.M. Spencer. 1972. Atmospheric model for correction of spacecraft data. In: Proceedings of the Eighth Annual Symposium on Remote Sensing of Environment, Ann Arbor, MI: ERIM, pp. 895–934.

    Google Scholar 

  • U.S. Geological Survey (USGS). 2006a. EO-1 Home—Earth Observing Mission 1 [web page]. http://eo1.gsfc.nasa.gov/ (last accessed 27 May 2011).

  • U.S. Geological Survey (USGS). 2006b. Seamless data distribution system [web page]. National Center for Earth Resources Observation and Science. http://seamless.usgs.gov (last accessed 2 June 2011).

  • U.S.Geological Survey (USGS). 2004. USGS National Land Cover Data [web page]. Sioux Falls: EROS Data Center. http://landcover.usgs.gov/prodescription.html

  • van Aardt, J.A.N., and R.H. Wynne. 2001. Spectral separability among six southern tree species. Photogrammetric Engineering and Remote Sensing. 67:1367–1375.

    Google Scholar 

  • Van Genderen, J.L., B.F. Lock, and P.A. Vass. 1978. Remote sensing: statistical testing of map accuracy. Remote Sens. Environ. 7, 3–14.

    Google Scholar 

  • Verkere, J. and S. Khorram. 2015. Personal communication

    Google Scholar 

  • Wald, L. 1999. Some terms of reference in data fusion. IEEE Transactions on Geoscience and Remote Sensing. 37(3):1190–1193.

    Article  Google Scholar 

  • Wang, H.Q., and E.C. Ellis. 2005. Image misregistration error in change measurements. Photogrammetric Engineering and Remote Sensing. 71:1037–1044.

    Article  Google Scholar 

  • Wang, S. and X. Wang. 2009. Local search algorithm for K-means clustering based on minimum sub-cluster size. In: Proceedings, CCPR 2009, Chinese Conference on Pattern Recognition, 4–6 November 2009, Nanjing, China, 1–4.

    Google Scholar 

  • Wardlow, B.D., S.L. Egbert, and J.H. Kastens. 2007. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment. 108:290–310.

    Article  Google Scholar 

  • Wilson, J. and G. Lindsey. 2005. Socioeconomic correlates and environmental impacts of urban development in a central Indiana landscape. Journal of Urban Planning. D-ASCE 131:159–169.

    Article  Google Scholar 

  • Winker, D.M., M.A. Vaughan, A. Omar, Y. Hu, K.A. Powell, Z. Liu, W.H. Hunt, and S.A. Young. 2009. Overview of the CALIPSO mission and CALIOP data processing algorithms. Journal of Atmospheric and Oceanic Technology. 26(11):2310–2323.

    Article  Google Scholar 

  • Xiao, X., S. Boles, J. Liu, D. Zhuang, S. Frolking, C. Li, W. Salas, and B. Moore III. 2005. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment. 95:480–492.

    Article  Google Scholar 

  • Yang, C. and P. Chung. 2002. Knowledge-based automatic change detection positioning system for complex heterogeneous environments. Journal of Intelligent and Robotic Systems. 33:85–98.

    Article  Google Scholar 

  • Yang, W., Z. Zeng, and S. Zhang. 2010. Application of combining watershed and fast clustering method in image segmentation. In: Proceedings of the 2nd International Conference on Computer Modeling and Simulation, 22–24 January 2010, Sanya, China, 170–174.

    Google Scholar 

  • Yu, Q., P. Gong, N. Clinton, G. Biging, M. Kelly, and D. Schirokauer. 2006. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering and Remote Sensing. 72:799–811.

    Article  Google Scholar 

  • Yuan, H., C.F. van der Wiele, and S. Khorram. 2009. An automated artificial neural network system for land use/land cover classification from Landsat TM imagery. Remote Sensing 1: 243–265.

    Google Scholar 

  • Zadeh, L.A. 1965. Fuzzy sets. Information and Control. 8(3):338–353.

    Article  Google Scholar 

  • Zhang, K., S.C. Chen, D. Whitman, M.L. Shyu, J. Yan, and C. Zhang. 2003. A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing. 41(4):872–882.

    Article  Google Scholar 

  • Zhang, K., J. Yan, and S.C. Chen. 2006. Automatic construction of building footprints from airborne LIDAR data. IEEE Transactions on Geosciences and Remote Sensing. 44(9):2523–2533.

    Article  Google Scholar 

  • Zhang, Q., J. Wang, X. Peng, P. Gong, and P. Shi. 2002. Urban built-up land change detection with road density and spectral information from multi-temporal Landsat TM data. International Journal of Remote Sensing. 23:3057–3078.

    Article  Google Scholar 

  • Zheng, J., Z. Cui, A. Liu, and Y. Jia. 2008. A K-means remote sensing image classification method based on AdaBoost. In: Proceedings of the 4th International Conference on Natural Computation, 18–20 October 2008, Jinan, China, 4: 27–32.

    Google Scholar 

  • Zitová, B., and J. Flusser. 2003. Image registration methods: a survey. Image and Vision Computing. 21:977–1000.

    Article  Google Scholar 

Suggested Reading

  • Dai, X. and S. Khorram. 1997. “A New Automated Land Cover Change Detection System for Remotely-Sensed Imagery based on Artificial Neural Networks,” Proc. IEEE/IGARSS’97 International Geoscience and Remote Sensing Symposium, Singapore.

    Google Scholar 

  • Jain, A.K. 1989. “Fundamentals of Digital Image Processing,” Englewood Cliffs, NJ: Prentice Hall, pp. 418–421.

    Google Scholar 

  • Jensen, J.R. 2005. Introductory Digital Image Processing, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall. Pp. 316.

    Google Scholar 

  • Lillesand, T., R. Kiefer, and J. Chipman. 2008. Remote Sensing and Image Interpretation, 6th edition. New York: John Wiley and Sons. pp. 763.

    Google Scholar 

  • Lunetta, R. L. and J.G. Lyons (Eds.), 2003, Geospatial Data Accuracy Assessment, Las Vegas: US Environmental Protection Agency, Report No. EPA/600/R-03/064, pp. 335.

    Google Scholar 

  • Zadeh, L.A. 1965. Fuzzy sets. Information and Control 8(3): 338–353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Khorram .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Khorram, S., van der Wiele, C.F., Koch, F.H., Nelson, S.A.C., Potts, M.D. (2016). Data Processing Tools. In: Principles of Applied Remote Sensing. Springer, Cham. https://doi.org/10.1007/978-3-319-22560-9_3

Download citation

Publish with us

Policies and ethics