Droplets, Bubbles and Ultrasound Interactions

  • Oleksandr Shpak
  • Martin Verweij
  • Nico de Jong
  • Michel VersluisEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 880)


The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.


Droplet Microbubble Ultrasound 


  1. Bacon DR (1984) Finite amplitude distortion of the pulsed fields used in diagnostic ultrasound. Ultrasound Med Biol 10:189–195CrossRefPubMedGoogle Scholar
  2. Biro GP, Blais P, Rosen AL (1987) Peruorocarbon blood substitutes. CRC Critic Rev Oncol Hematol 6:311–374CrossRefGoogle Scholar
  3. Bjerknes VFK (1906) Fields of force. Columbia University Press, New YorkGoogle Scholar
  4. Blackstock DT (1964) On plane, spherical and cylindrical sound waves of finite amplitude in loss less fluids. J Acoust Soc Am 36:217–219CrossRefGoogle Scholar
  5. Carneal CM, Kripfgans OD, Krucker J, Carson PL, Fowlkes JB (2011) A tissue mimicking ultrasound test object using droplet vaporization to create point targets. Pharm Res 58:2013–2025Google Scholar
  6. Church CC (1995) The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J Acoust Soc Am 97:1510–1521CrossRefGoogle Scholar
  7. Cleveland R, Hamilton M, Blackstock DT (1996) Time-domain modeling of finite amplitude sound in relaxing fluids. J Acoust Soc Am 99:3312–3318CrossRefGoogle Scholar
  8. de Jong N, Emmer M, Chin CT, Bouakaz A, Mastik F, Lohse D, Versluis M (2007) Compression-only behavior of phospholipid-coated contrast bubbles. Ultrasound Med Biol 33:653–656CrossRefPubMedGoogle Scholar
  9. Epstein PS, Plesset MS (1950) On the stability of gas bubbles in liquid-gas solutions. J Chem Phys 18:1505–1509CrossRefGoogle Scholar
  10. Fabiilli ML, Haworth KJ, Sebastian IE, Kripfgans OD, Carson PL, Fowlkes JB (2010a) Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion. Ultrasound Med Biol 36:1364–1375PubMedCentralCrossRefPubMedGoogle Scholar
  11. Fabiilli ML, Lee JA, Kripfgans OD, Carson PL, Fowlkes JB (2010b) Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions. Ultrasound Med Biol 27:2753–2765Google Scholar
  12. Giesecke T, Hynynen K (2003) Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro. Ultrasound Med Biol 29:1359–1365CrossRefPubMedGoogle Scholar
  13. Gramiak R, Shah PM (1968) Echocardiography of the aortic root. Invest Radiol 3:356–366CrossRefPubMedGoogle Scholar
  14. Hamilton M, Morfey C (2008) Model equations. In: Hamilton MF, Blackstock DT (eds) Nonlinear acoustics. Acoustical Society of America, Melville, pp 41–63Google Scholar
  15. Hamilton M, Tjotta JN, Tjotta S (1985) Nonlinear effects in the farfield of a directive sound source. J Acoust Soc Am 78:202–216CrossRefGoogle Scholar
  16. Hart TS, Hamilton MF (1988) Nonlinear effects in focused sound beams. J Acoust Soc Am 84:1488–1496CrossRefGoogle Scholar
  17. Kamakura T, Ishiwata T, Matsuda K (2000) Model equation for strongly focused finite amplitude sound beams. J Acoust Soc Am 107:3035–3046CrossRefPubMedGoogle Scholar
  18. Karshafian R, Bevan PD, Williams R, Samac S, Burns PN (2009) Sonoporation by ultrasound-activated microbubble contrast agents: effect of acoustic exposure parameters on cell membrane permeability and cell viability. Ultrasound Med Biol 35:847–860CrossRefPubMedGoogle Scholar
  19. Klibanov AL (2006) Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest Radiol 41:354–362CrossRefPubMedGoogle Scholar
  20. Kripfgans OD, Fowlkes JB, Miller DL, Eldevik OP, Carson PL (2000) Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol 26:1177–1189CrossRefPubMedGoogle Scholar
  21. Kuznetsov VP (1971) Equation of nonlinear acoustics. Sov Phys Acoust 16:467–470Google Scholar
  22. Lee YS, Hamilton MF (1995) Time-domain modeling of pulsed finite-amplitude sound beams. J Acoust Soc Am 97:906–917CrossRefGoogle Scholar
  23. Lee D, Pierce A (1995) Parabolic equation development in recent decade. J Comput Acoust 3:95–173CrossRefGoogle Scholar
  24. Leighton TG (1994) The acoustic bubble. Academic, LondonGoogle Scholar
  25. Lindner JR (2004) Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 35:527–533CrossRefGoogle Scholar
  26. Long DM, Multer FK, Greenburg AG, Peskin GW, Lasser EC, Wickham WG, Sharts CM (1978) Tumor imaging with x-rays using macrophage uptake of radiopâque fluorocarbon emulsions. Surgery 84:104–112PubMedGoogle Scholar
  27. Marmottant P, van der Meer SM, Emmer M, Versluis M, de Jong N, Hilgenfeldt S, Lohse D (2005) A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J Acoust Soc Am 118:3499–3505CrossRefGoogle Scholar
  28. Minnaert M (1933) On musical air-bubbles and sounds of running water. Philos Mag 16:235–248CrossRefGoogle Scholar
  29. Neppiras EA, Noltingk BE (1951) Cavitation produced by ultrasonics: theoretical conditions for the onset of cavitation. Proc Phys Soc B 64:1032–1038CrossRefGoogle Scholar
  30. Noltingk BE, Neppiras EA (1950) Cavitation produced by ultrasonics. Proc Phys Soc B 63:674–685CrossRefGoogle Scholar
  31. Overvelde M (2010) Ultrasound contrast agents: dynamics of coated bubbles. PhD thesis, University of TwenteGoogle Scholar
  32. Overvelde M, Garbin V, Sijl J, Dollet B, de Jong N, Lohse D, Versluis M (2010) Nonlinear shell behavior of phospholipid-coated microbubbles. Ultrasound Med Biol 36:2080–2092CrossRefPubMedGoogle Scholar
  33. Plesset MS (1949) The dynamics of cavitation bubbles. J Appl Phys 16:277–282Google Scholar
  34. Poritsky H (1952) The collapse or growth of a spherical bubble or cavity in a viscous fluid. Proceedings of the first US National Congress on Applied Mechanics, ASME, New York, pp 813–821Google Scholar
  35. Prosperetti A (2011) Advanced mathematics for applications. Cambridge University Press, Cambridge, UK/New YorkGoogle Scholar
  36. Rapoport NY, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99:1095–1106CrossRefPubMedGoogle Scholar
  37. Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam KH (2009) Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 138:268–276PubMedCentralCrossRefPubMedGoogle Scholar
  38. Rayleigh L (1917) On the pressure development in a liquid during the collapse of a spherical cavity. Philos Mag 32:94–98CrossRefGoogle Scholar
  39. Reznik N, Shpak O, Gelderblom E, Williams R, de Jong N, Versluis M, Burns P (2013) The efficiency and stability of bubble formation by acoustic vaporization of submicron perfluorocarbon droplets. Ultrasonics 53:1368–1376CrossRefPubMedGoogle Scholar
  40. Schad KC, Hynynen K (2010) In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy. Phys Med Biol 55:4933–4947CrossRefPubMedGoogle Scholar
  41. Shpak O, Kokhuis T, Luan Y, Lohse D, de Jong N, Fowlkes B, Fabiilli M, Versluis M (2013a) Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets. J Acoust Soc Am 134:1610–1621CrossRefPubMedGoogle Scholar
  42. Shpak O, Stricker L, Versluis M, Lohse D (2013b) The role of gas in ultrasonically driven vapor bubble growth. Phys Med Biol 58:2523–2535CrossRefPubMedGoogle Scholar
  43. Shung KK (2006) Diagnostic ultrasound: imaging and blood flow measurements. CRC Press, Boca RatonGoogle Scholar
  44. Szabo TL (2004) Diagnostic ultrasound, imaging, inside out. Academic, New YorkGoogle Scholar
  45. Szabo TL, Clougherty F, Grossman C (1999) Effects on nonlinearity on the estimation of in situ values of acoustic output parameters. Ultrasound Med Biol 18:33–42Google Scholar
  46. Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R (2004) Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 59:1291–1314CrossRefGoogle Scholar
  47. Unger EC, Hersh E, Vannan M, Matsunaga TO, McCreery T (2009) Local drug and gene delivery through microbubbles. Prog Cardiovasc Dis 41:45–54Google Scholar
  48. Varslot T, Taraldsen G (2005) Computer simulation of forward wave propagation in soft tissue. IEEE Trans Ultrason Ferroelectr Freq Control 52:1473–1482CrossRefPubMedGoogle Scholar
  49. Westervelt P (1963) Parametric acoustic array. J Acoust Soc Am 52:535–537CrossRefGoogle Scholar
  50. Williams R, Wright C, Cherin E, Reznik N, Lee M, Gorelikov I, Foster FS, Matsuura N, Burns PN (2013) Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer. Phys Med Biol 39:475–489Google Scholar
  51. Zabolotskaya EA, Khokhlov RV (1969) Quasi-plane waves in the nonlinear acoustics of confined beams. Sov Phys Acoust 15:35–40Google Scholar
  52. Zhang P, Porter T (2010) An in vitro study of a phase-shift nanoemulsion: a potential nucleation agent for bubble-enhanced HIFU tumor ablation. Ultrasound Med Biol 36:1856–1866CrossRefPubMedGoogle Scholar
  53. Zhang M, Fabiilli ML, Haworth KJ, Fowlkes JB, Kripfgans OD, Roberts WW, Ives KA, Carson PL (2010) Initial investigation of acoustic droplet vaporization for occlusion in canine kidney. Ultrasound Med Biol 36:1691–1703PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Oleksandr Shpak
    • 1
  • Martin Verweij
    • 2
  • Nico de Jong
    • 2
    • 3
  • Michel Versluis
    • 1
    Email author
  1. 1.Physics of Fluids GroupMIRA Institute for Biomedical Technology and Technical Medicine, University of TwenteEnschedeThe Netherlands
  2. 2.Acoustic Wavefield ImagingDelft University of TechnologyDelftThe Netherlands
  3. 3.Biomedical EngineeringErasmus MC University Medical Center RotterdamRotterdamThe Netherlands

Personalised recommendations