Advertisement

MR-Guided Transcranial Focused Ultrasound

  • Jean-François AubryEmail author
  • Mickael TanterEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 880)

Abstract

Previous chapters introduced the ability of using focused ultrasound to ablate tissues. It has led to various clinical applications in the treatment of uterine fibroid, prostate or liver cancers. Nevertheless, treating the brain non-invasively with focused ultrasound has been considered beyond reach for almost a century: The skull bone protects the brain from mechanical injuries, but it also reflects and refracts ultrasound, making it difficult to target the brain with focused ultrasound. Fortunately, aberration correction techniques have been developed recently and thermal lesioning in the thalamus has been achieved clinically. This chapter introduces the aberration effect of the skull bone and how it can be corrected non-invasively. It also presents the latest clinical results obtained with thermal ablation and introduces novel non-thermal approaches that could revolutionize brain therapy in the future.

Keywords

Skull aberration Thalomotomy Mechanical ablation BBB opening Neuromodulation 

References

  1. Alkins R, Huang Y, Pajek D, Hynynen K (2013) Cavitation-based third ventriculostomy using MRI-guided focused ultrasound: Laboratory investigation. J Neurosurg 119:1520–1529PubMedCentralPubMedCrossRefGoogle Scholar
  2. Aubry JF, Tanter M, Gerber J, Thomas JL, Fink M (2001) Optimal focusing by spatio-temporal inverse filter. II experiments application to focusing through absorbing and reverberating media. J Acoust Soc Am 110:48–58PubMedCrossRefGoogle Scholar
  3. Aubry JF, Tanter M, Pernot M, Thomas JL, Fink M (2003) Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. J Acoust Soc Am 113:84–93PubMedCrossRefGoogle Scholar
  4. Baron C, Aubry JF, Tanter M, Meairs S, Fink M (2009) Simulation of intracranial acoustic fields in clinical trials of sonothrombolysis. Ultrasound Med Biol 35:1148–1158PubMedCrossRefGoogle Scholar
  5. Borrelli M, Bailey K, Dunn F (1981) Early ultrasonic effects upon mammalian CNS structures (chemical synapses). J Acoust Soc Am 69:1514–1516PubMedCrossRefGoogle Scholar
  6. Chang WS, Jung HH, Kweon EJ, Zadicario E, Rachmilevitch I, Chang JW (2014) Unilateral magnetic resonance guided focused ultrasound thalamotomy for essential tremor: practices and clinicoradiological outcomes. J Neurol Neurosurg Psychiatry 86(3):257PubMedCrossRefGoogle Scholar
  7. Chauvet D, Marsac L, Pernot M, Boch AL, Guillevin R, Salameh N, Souris L, Darrasse L, Fink M, Tanter M, Aubry JF (2013) Targeting accuracy of transcranial magnetic resonance–guided high-intensity focused ultrasound brain therapy: a fresh cadaver model. J Neurosurg 118:1046–1052PubMedCrossRefGoogle Scholar
  8. Chen PY, Liu HL, Hua MY, Yang HW, Huang CY, Chu PC, Lyu LA, Tseng IC, Feng LY, Tsai HC, Chen SM, Lu YJ, Wang JJ, Yen TC, Ma YH, Wu T, Chen JP, Chuang JI, Shin JW, Hsueh C, Wei KC (2010) Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment. Neuro Oncol 12:1050–1060PubMedCentralPubMedCrossRefGoogle Scholar
  9. Choi JJ, Pernot M, Small SA, Konofagou EE (2007) Noninvasive, transcranial and localized opening of the blood–brain barrier using focused ultrasound in mice. Ultrasound Med Biol 33:95–104PubMedCrossRefGoogle Scholar
  10. Clark JM, White DN, Curry GR, Stevenson RJ, Campbell JK, Jenkins CO (1971) The measurement of intracranial echo pulsations. Med Biol Eng 9:263–287PubMedCrossRefGoogle Scholar
  11. Clement G, Hynynen K (2002a) A non-invasive method for focusing ultrasound through the human skull. Phys Med Biol 47:1219–1236PubMedCrossRefGoogle Scholar
  12. Clement GT, Hynynen K (2002b) Micro-receiver guided transcranial beam steering. IEEE Trans Ultrason Ferroelect Freq Control 49:447–453CrossRefGoogle Scholar
  13. Clement GT, Sun J, Giesecke T, Hynynen K (2000) A hemisphere array for non-invasive ultrasound brain therapy and surgery. Phys Med Biol 45:3707–3719PubMedCrossRefGoogle Scholar
  14. Daffertshofer M, Gass A, Ringleb P, Sitzer M, Sliwka U, Els T, Sedlaczek O, Koroshetz WJ, Hennerici MG (2005) Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia: increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator: results of a phase II clinical trial. Stroke 36:1441–1446PubMedCrossRefGoogle Scholar
  15. Deffieux T, Younan Y, Wattiez N, Tanter M, Pouget P, Aubry JF (2013) Low-intensity focused ultrasound modulates monkey visuomotor behavior. Curr Biol 23:2430–2433PubMedCrossRefGoogle Scholar
  16. Elias WJ, Huss D, Voss T, Loomba J, Khaled M, Zadicario E, Frysinger RC, Sperling SA, Wylie S, Monteith SJ, Druzgal J, Shah BB, Harrison M, Wintermark M (2013a) A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med 369:640–648PubMedCrossRefGoogle Scholar
  17. Elias WJ, Khaled M, Hilliard JD, Aubry JF, Frysinger RC, Sheehan JP, Wintermark M, Lopes MB (2013b) A magnetic resonance imaging, histological, and dose modeling comparison of focused ultrasound, radiofrequency, and Gamma Knife radiosurgery lesions in swine thalamus. J Neurosurg 119:307–317PubMedCrossRefGoogle Scholar
  18. Fry FJ, Barger JE (1978) Acoustical properties of the human skull. J Acoust Soc Am 63:1576–1590PubMedCrossRefGoogle Scholar
  19. Fry FJ, Ades HW, Fry WJ (1958) Production of reversible changes in the central nervous system by ultrasound. Science 127:83–84PubMedCrossRefGoogle Scholar
  20. Fry FJ, Sanghvi NT, Foster RS, Bihrle R, Hennige C (1995) Ultrasound and microbubbles: their generation, detection and potential utilization in tissue and organ therapy—experimental. Ultrasound Med Biol 21:1227–1237PubMedCrossRefGoogle Scholar
  21. Gateau J, Marsac L, Pernot M, Aubry JF, Tanter M, Fink M (2010) Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature. IEEE Trans Biomed Eng 57:134–144PubMedCentralPubMedCrossRefGoogle Scholar
  22. Gateau J, Aubry JF, Pernot M, Fink M, Tanter M (2011a) Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high-intensity ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 58:517–532PubMedCentralPubMedCrossRefGoogle Scholar
  23. Gateau J, Aubry JF, Chauvet D, Boch A, Fink M, Tanter M (2011b) In vivo bubble nucleation probability in sheep brain tissue. Phys Med Biol 56:7001PubMedCrossRefGoogle Scholar
  24. Gavrilov L, Gersuni G, Ilyinsky O, Sirotyuk M, Tsirulnikov E, Shchekanov E (1976) The effect of focused ultrasound on the skin and deep nerve structures of man and animal. Prog Brain Res 43:279–292PubMedCrossRefGoogle Scholar
  25. Gyongy M, Coussios CC (2009) Passive spatial mapping of inertial cavitation during HIFU exposure. IEEE Trans Biomed Eng 57:48–56PubMedCrossRefGoogle Scholar
  26. Hallett M (2000) Transcranial magnetic stimulation and the human brain. Nature 406:147–150PubMedCrossRefGoogle Scholar
  27. Herbert E, Pernot M, Montaldo G, Fink M, Tanter M (2009) Energy-based adaptive focusing of waves: application to noninvasive aberration correction of ultrasonic wavefields. IEEE Trans Ultrason Ferroelectr Freq Control 56:2388–2399PubMedCentralPubMedCrossRefGoogle Scholar
  28. Hertzberg Y, Volovick A, Zur Y, Medan Y, Vitek S, Navon G (2010) Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy. Med Phys 37:2934–2942PubMedCrossRefGoogle Scholar
  29. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood–brain barrier in rabbits. Radiology 220:640–646PubMedCrossRefGoogle Scholar
  30. Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N (2005) Local and reversible blood–brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 24:12–20PubMedCrossRefGoogle Scholar
  31. Jeanmonod D, Magnin M, Morel A, Siegemund M (2001) Surgical control of the human thalamocortical dysrhythmia: I. Central lateral thalamotomy in neurogenic pain. Thalamus Relat Syst 1:71–79Google Scholar
  32. Jeanmonod D, Werner B, Morel A, Michels L, Zadicario E, Schiff G, Martin E (2012) Transcranial magnetic resonance inaging-guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain. Neurosurg Focus 32:1–11CrossRefGoogle Scholar
  33. Jenkins CO, White DN (1972) The rise time of intracranial echo pulsations and intracranial pressure. Acta Neurol Scand 48:115–123PubMedCrossRefGoogle Scholar
  34. Jordao JF, Ayala-Grosso CA, Markham K, Huang Y, Chopra R, McLaurin J, Hynynen K, Aubert I (2010) Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer’s disease. PLoS One 5, e10549PubMedCentralPubMedCrossRefGoogle Scholar
  35. Kaye EA, Chen J, Pauly KB (2011) Rapid MR‐ARFI method for focal spot localization during focused ultrasound therapy. Mag Reson Med 65:738–743CrossRefGoogle Scholar
  36. Kieran K, Hall TL, Parsons JE, Wolf JS, Fowlkes JB, Cain CA, Roberts WW (2007) Refining histotripsy: defining the parameter space for the creation of nonthermal lesions with high intensity, pulsed focused ultrasound of the in vitro kidney. J Urol 178:672–676PubMedCrossRefGoogle Scholar
  37. King RL, Brown JR, Newsome WT, Pauly KB (2013) Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med Biol 39:312–331PubMedCrossRefGoogle Scholar
  38. Krasovitski B, Frenkel V, Shoham S, Kimmel E (2011) Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci U S A 108:3258–3263PubMedCentralPubMedCrossRefGoogle Scholar
  39. Larrat B, Pernot M, Montaldo G, Fink M, Tanter M (2010) MR-guided adaptive focusing of ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 57:1734–1747PubMedCentralPubMedCrossRefGoogle Scholar
  40. Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, Tyler WJ (2014) Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci 17:322–329PubMedCrossRefGoogle Scholar
  41. Leighton T (1994) The acoustic bubble. Academic, LondonGoogle Scholar
  42. Lipsman N, Schwartz ML, Huang Y, Lee L, Sankar T, Chapman M, Hynynen K, Lozano AM (2013) MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol 12:462–468PubMedCrossRefGoogle Scholar
  43. Liu HL, Hua MY, Chen PY, Chu PC, Pan CH, Yang HW, Huang CY, Wang JJ, Yen TC, Wei KC (2010) Blood–brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 255:415–425PubMedCrossRefGoogle Scholar
  44. Marquet F, Pernot M, Aubry JF, Montaldo G, Tanter M, Fink M (2006) Non-invasive transcranial ultrasound therapy guided by CT-scans. Conf Proc IEEE Eng Med Biol Soc 1:683–687PubMedCrossRefGoogle Scholar
  45. Marquet F, Boch AL, Pernot M, Montaldo G, Seilhean D, Fink M, Tanter M, Aubry JF (2013) Non-invasive ultrasonic surgery of the brain in non-human primates. J Acoust Soc Am 134:1632–1639PubMedCrossRefGoogle Scholar
  46. Marsac L, Chauvet D, Larrat B, Pernot M, Robert B, Fink M, Boch AL, Aubry JF, Tanter M (2012) MR-guided adaptive focusing of therapeutic ultrasound beams in the human head. Med Phys 39:1141PubMedCentralPubMedCrossRefGoogle Scholar
  47. Martin E, Jeanmonod D, Morel A, Zadicario E, Werner B (2009) High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol 66:858–861PubMedCrossRefGoogle Scholar
  48. Marty B, Larrat B, Van Landeghern M, Robic C, Robert P, Port M, Le Bihan D, Pernot M, Tanter M, Lethimonnier F, Meriaux S (2012) Dynamic study of blood–brain barrier closure after its disruption using ultrasound: a quantitative analysis. J Cereb Blood Flow Metab 32:1948–1958PubMedCentralPubMedCrossRefGoogle Scholar
  49. Monteith S, Sheehan J, Medel R, Wintermark M, Eames M, Snell J, Kassell NF, Elias WJ (2013a) Potential intracranial applications of magnetic resonance–guided focused ultrasound surgery: a review. J Neurosurg 118:215–221PubMedCrossRefGoogle Scholar
  50. Monteith SJ, Harnof S, Medel R, Popp B, Wintermark M, Lopes MBS, Kassell NF, Elias WJ, Snell J, Eames M (2013b) Minimally invasive treatment of intracerebral hemorrhage with magnetic resonance–guided focused ultrasound: laboratory investigation. J Neurosurg 118:1035–1045PubMedCrossRefGoogle Scholar
  51. Moser D, Zadicario E, Schiff G, Jeanmonod D (2012) Measurement of targeting accuracy in focused ultrasound functional neurosurgery: technical note. Neurosurg Focus 32, E2PubMedCrossRefGoogle Scholar
  52. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimul 1:206–223PubMedCrossRefGoogle Scholar
  53. O’Reilly MA, Hynynen K (2012) Blood–brain barrier: real-time feedback-controlled focused ultrasound disruption by using an acoustic emissions-based controller. Radiology 263:96–106PubMedCentralPubMedCrossRefGoogle Scholar
  54. O’Reilly MA, Waspe AC, Ganguly M, Hynynen K (2011) Focused-ultrasound disruption of the blood–brain barrier using closely-timed short pulses: influence of sonication parameters and injection rate. Ultrasound Med Biol 37:587–594PubMedCentralPubMedCrossRefGoogle Scholar
  55. Pernot M, Aubry JF, Tanter M, Thomas J, Fink M (2003) High power transcranial beam steering for ultrasonic brain therapy. Phys Med Biol 48:2577–2589PubMedCentralPubMedCrossRefGoogle Scholar
  56. Pernot M, Aubry JF, Tanter M, Boch AL, Kujas M and Fink M (2004) Ultrasonic transcranial brain therapy: First in vivo clinical investigation on 22 sheep using adaptive focusing. 2004 IEEE Ultrasonics Symposium, Vol 1–3. M. P. Yuhas, pp 1013–1016Google Scholar
  57. Pernot M, Aubry JF, Tanter M, Boch AL, Marquet F, Kujas M, Seilhean D, Fink M (2007) In vivo transcranial brain surgery with an ultrasonic time reversal mirror. J Neurosurg 106:1061–1066PubMedCrossRefGoogle Scholar
  58. Phillips DJ, Smith SW, von Ramm OT and Thurstone FL (1975) Sampled aperture techniques applied to B-Mode echoencephalography. Acoustical Holography. N. Booth, Springer US, pp 103–120Google Scholar
  59. Pinton GF, Aubry JF, Fink M and Tanter M (2010) Numerical prediction of frequency dependent 3D maps of mechanical index thresholds in ultrasonic brain therapy. Ultrasonics Symposium (IUS), 2010 IEEEGoogle Scholar
  60. Pinton G, Aubry JF, Bossy E, Muller M, Pernot M, Tanter M (2012a) Attenuation, scattering, and absorption of ultrasound in the skull bone. Med Phys 39:299–307PubMedCrossRefGoogle Scholar
  61. Pinton G, Aubry JF, Fink M, Tanter M (2012b) Numerical prediction of frequency dependent 3D maps of mechanical index thresholds in ultrasonic brain therapy. Med Phys 39:455–467PubMedCrossRefGoogle Scholar
  62. Plaksin M, Shoham S, Kimmel E (2014) Intramembrane cavitation as a predictive Bio-piezoelectric mechanism for ultrasonic brain stimulation. Phys Rev X 4:011004Google Scholar
  63. Pulkkinen A, Huang Y, Song J, Hynynen K (2011) Simulations and measurements of transcranial low-frequency ultrasound therapy: skull-base heating and effective area of treatment. Phys Med Biol 56:4661PubMedCrossRefGoogle Scholar
  64. Raymond SB, Treat LH, Dewey JD, McDannold NJ, Hynynen K, Bacskai BJ (2008) Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer’s disease mouse models. PLoS One 3, e2175PubMedCentralPubMedCrossRefGoogle Scholar
  65. Ressler KJ, Mayberg HS (2007) Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nature Neuroscience 10:1116–1124PubMedCentralPubMedCrossRefGoogle Scholar
  66. Sheikov N, McDannold N, Sharma S, Hynynen K (2008) Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 34:1093–1104PubMedCentralPubMedCrossRefGoogle Scholar
  67. Sun J, Hynynen K (1998) Focusing of therapeutic ultrasound through a human skull: a numerical study. J Acoust Soc Am 104:1705–1715PubMedCrossRefGoogle Scholar
  68. Szobota S, Gorostiza P, Del Bene F, Wyart C, Fortin DL, Kolstad KD, Tulyathan O, Volgraf M, Numano R, Aaron HL (2007) Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54:535–545PubMedCrossRefGoogle Scholar
  69. Tanter M, Thomas JL and Fink M (1996) Focusing through skull with time reversal mirrors. Application to hyperthermia. 1996 IEEE Ultrasonics Symposium, Proceedings, Vols 1 and 2. Levy M, Schneider SC and McAvoy BR, pp 1289–1293Google Scholar
  70. Tanter M, Thomas JL, Fink M (1998) Focusing and steering through absorbing and aberrating layers: application to ultrasonic propagation through the skull. J Acoust Soc Am 103:2403–2410PubMedCrossRefGoogle Scholar
  71. Tanter M, Thomas JL, Fink M (2000) Time reversal and the inverse filter. J Acoust Soc Am 108:223–234PubMedCrossRefGoogle Scholar
  72. Tanter M, Aubry JF, Gerber J, Thomas JL, Fink M (2001) Optimal focusing by spatio-temporal inverse filter I. Basic principles. J Acoust Soc Am 110:37–47PubMedCrossRefGoogle Scholar
  73. Tanter M, Pernot M, Aubry JF, Montaldo G, Marquet F, Fink M (2007) Compensating for bone interfaces and respiratory motion in high-intensity focused ultrasound. Int J Hyperthermia 23:141–151PubMedCrossRefGoogle Scholar
  74. Tasker RR (1998) Deep brain stimulation is preferable to thalamotomy for tremor suppression. Surg Neurol 49:145–153; discussion 153–144PubMedCrossRefGoogle Scholar
  75. Thomas JL, Fink MA (1996) Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. IEEE Trans Ultrason Ferroelectr Freq Contr 43:1122–1129CrossRefGoogle Scholar
  76. Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121:901–907PubMedCrossRefGoogle Scholar
  77. Tufail Y, Matyushov A, Baldwin N, Tauchmann ML, Georges J, Yoshihiro A, Sih T, Tyler WJ (2010) Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 66:681–694PubMedCrossRefGoogle Scholar
  78. Tyler WJ, Tufail Y, Finsterwald M, Tauchmann ML, Olson EJ, Majestic C (2008) Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One 3, e3511PubMedCentralPubMedCrossRefGoogle Scholar
  79. Vignon F, Aubry JF, Tanter M, Margourn A, Fink M (2006) Adaptive focusing for transcranial ultrasound imaging using dual arrays. J Acoust Soc Am 120:2737–2745PubMedCrossRefGoogle Scholar
  80. Vlachos F, Tung YS, Konofagou EE (2010) Permeability assessment of the focused ultrasound-induced blood–brain barrier opening using dynamic contrast-enhanced MRI. Phys Med Biol 55:5451–5466PubMedCentralPubMedCrossRefGoogle Scholar
  81. Vlachos F, Tung YS, Konofagou E (2011) Permeability dependence study of the focused ultrasound-induced blood–brain barrier opening at distinct pressures and microbubble diameters using DCE-MRI. Mag Reson Med 66:821–830CrossRefGoogle Scholar
  82. White DN, Hanna LF (1974) Automatic midline echoencephalography. Examination of 3,333 consecutive cases with the automatic midline computer. Neurology 24:80–93PubMedCrossRefGoogle Scholar
  83. White DN, Clark JM, Chesebrough JN, White MN, Campbell JK (1968) Effect of the skull in degrading the display of echoencephalographic B and C scans. J Acoust Soc Am 44:1339–1345PubMedCrossRefGoogle Scholar
  84. Xu Z, Owens G, Gordon D, Cain C, Ludomirsky A (2010) Noninvasive creation of an atrial septal defect by histotripsy in a canine model. Circulation 121:742–749PubMedCentralPubMedCrossRefGoogle Scholar
  85. Xu Z, Carlson C, Beckelman B, Snell J, Eames M, Hanael A, Lopes B, Raghavan P, Lee CC, Yen CP, Schlesinger D, Aubry JF, Sheehan J (2014) Intracranial inertial cavitation threshold and thermal ablation lesion creation using magnetic resonance imaging-guided 220 kHz focused ultrasound surgery. J Neurosurg 7:1–10CrossRefGoogle Scholar
  86. Yang PS, Kim H, Lee W, Bohlke M, Park S, Maher TJ, Yoo SS (2012) Transcranial focused ultrasound to the thalamus is associated with reduced extracellular GABA levels in rats. Neuropsychobiology 65:153–160PubMedCrossRefGoogle Scholar
  87. Yoo SS, Bystritsky A, Lee JH, Zhang Y, Fischer K, Min BK, McDannold NJ, Pascual-Leone A, Jolesz FA (2011) Focused ultrasound modulates region-specific brain activity. Neuroimage 56:1267–1275PubMedCentralPubMedCrossRefGoogle Scholar
  88. Younan Y, Deffieux T, Larrat B, Fink M, Tanter M, Aubry JF (2013) Influence of the pressure field distribution in transcranial ultrasonic neurostimulation. Med Phys 40:082902PubMedCrossRefGoogle Scholar
  89. Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8:577–581PubMedCrossRefGoogle Scholar
  90. Zhang S, Ding T, Wan M, Jiang H, Yang X, Zhong H, Wang S (2011) Minimizing the thermal losses from perfusion during focused ultrasound exposures with flowing microbubbles. J Acoust Soc Am 129:2336–2344PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut LangevinESPCI ParisTech, CNRS UMR 7587, INSERM U979ParisFrance
  2. 2.Department of Radiation OncologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations