Advertisement

Stimulation of Bone Repair with Ultrasound

  • Frédéric PadillaEmail author
  • Regina Puts
  • Laurence Vico
  • Alain Guignandon
  • Kay Raum
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 880)

Abstract

This chapter reviews the different options available for the use of ultrasound in the enhancement of fracture healing or in the reactivation of a failed healing process: LIPUS, shock waves and ultrasound-mediated delivery of bioactive molecules, such as growth factors or plasmids. The main emphasis is on LIPUS, or Low Intensity Pulsed Ultrasound, the most widespread and studied technique. LIPUS has pronounced bioeffects on tissue regeneration, while employing intensities within a diagnostic range. The biological response to LIPUS is complex as the response of numerous cell types to this stimulus involves several pathways. Known to-date mechanotransduction pathways involved in cell responses include MAPK and other kinases signaling pathways, gap-junctional intercellular communication, up-regulation and clustering of integrins, involvement of the COX-2/PGE2 and iNOS/NO pathways, and activation of the ATI mechanoreceptor. Mechanisms at the origin of LIPUS biological effects remain intriguing, and analysis is hampered by the diversity of experimental systems used in-vitro. Data point to clear evidence that bioeffects can be modulated by direct and indirect mechanical effects, like acoustic radiation force, acoustic streaming, propagation of surface waves, heat, fluid-flow induced circulation and redistribution of nutrients, oxygen and signaling molecules. One of the future engineering challenge is therefore the design of dedicated experimental set-ups allowing control of these different mechanical phenomena, and to relate them to biological responses. Then, the derivation of an ‘acoustic dose’ and the cross-calibration of the different experimental systems will be possible. Despite this imperfect knowledge of LIPUS biophysics, the clinical evidence, although most often of low quality, speaks in favor of the clinical use of LIPUS, when the economics of nonunion and the absence of toxicity of this ultrasound technology are taken into account.

Keywords

Bone repair Low intensity pulsed ultrasound 

Notes

Acknowledgments

The authors thank Ruslan PUTS for his help in the design and drawing of Fig. 21.5.

References

  1. Ahrens M, Ankenbauer T, Schröder D, Hollnagel A, Mayer H, Gross G (1993) Expression of human bone morphogenetic proteins-2 or -4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineages. DNA Cell Biol 12:871–880PubMedGoogle Scholar
  2. Al-Daghreer S, Doschak M, Sloan AJ, Major PW, Heo G, Scurtescu C, Tsui YY, El-Bialy T (2013) Short-term effect of low-intensity pulsed ultrasound on an ex-vivo 3-D tooth culture. Ultrasound Med Biol 39:1066–1074PubMedCrossRefGoogle Scholar
  3. Al-Daghreer S, Doschak M, Sloan AJ, Major PW, Heo G, Scurtescu C, Tsui YY, El-Bialy T (2014) Effect of low-intensity pulsed ultrasound on orthodontically induced root resorption in beagle dogs. Ultrasound Med Biol 40:1187–1196PubMedCrossRefGoogle Scholar
  4. Alvarenga EC, Rodrigues R, Caricati-Neto A, Silva-Filho FC, Paredes-Gamero EJ, Ferreira AT (2010) Low-intensity pulsed ultrasound-dependent osteoblast proliferation occurs by via activation of the P2Y receptor: role of the P2Y1 receptor. Bone 46:355–362PubMedCrossRefGoogle Scholar
  5. Angle SR, Sena K, Sumner DR, Virdi AS (2011) Osteogenic differentiation of rat bone marrow stromal cells by various intensities of low-intensity pulsed ultrasound. Ultrasonics 51:281–288PubMedCrossRefGoogle Scholar
  6. Argadine HM, Kinnick RR, Bolander ME, Greenleaf J (2005) 1 kHz low power sound stimulates ATDC5 chondrocytes. Proc IEEE Ultrason Symp 996–998Google Scholar
  7. Argadine H, Bolander ME, Greenleaf J (2006) Stimulation of proteglycan synthesis with low-intensity 1 kHz vibration IEEE. Proc IEEE Ultrason Symp 849–851Google Scholar
  8. Argintar E, Edwards S, Delahay J (2011) Bone morphogenetic proteins in orthopaedic trauma surgery. Injury 42:730–734PubMedCrossRefGoogle Scholar
  9. Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Fürst DO, Saftig P, Saint R, Fleischmann BK, Hoch M, Höhfeld J (2010) Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol 20:143–148PubMedCrossRefGoogle Scholar
  10. Azuma Y, Ito M, Harada Y, Takagi H, Ohta T, Jingushi S (2001) Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res 16:671–680PubMedCrossRefGoogle Scholar
  11. Bandow K, Nishikawa Y, Ohnishi T, Kakimoto K, Soejima K, Iwabuchi S, Kuroe K, Matsuguchi T (2007) Low-intensity pulsed ultrasound (LIPUS) induces RANKL, MCP-1, and MIP-1beta expression in osteoblasts through the angiotensin II type 1 receptor. J Cell Physiol 211:392–398PubMedCrossRefGoogle Scholar
  12. Bhandari M, Schemitsch EH (2010) Stimulation of fracture healing: osteobiologics, bone stimulators, and beyond. J Orthop Trauma 24 Suppl 1:S1PubMedCrossRefGoogle Scholar
  13. Birnbaum K, Wirtz DC, Siebert CH, Heller KD (2002) Use of extracorporeal shock-wave therapy (ESWT) in the treatment of non-unions. A review of the literature. Arch Orthop Trauma Surg 122:324–330PubMedGoogle Scholar
  14. Borriello G, Wermer E, Roe F, Kim AM, Ehrlich GD, Stewart PS (2004) Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48:2659–2664PubMedCentralPubMedCrossRefGoogle Scholar
  15. Bozec A, Wermer E, Roe F, Kim AM, Ehrlich GD, Stewart PS (2010) Fra-2/AP-1 controls bone formation by regulating osteoblast differentiation and collagen production. J Cell Biol 190:1093–1106PubMedCentralPubMedCrossRefGoogle Scholar
  16. Brown MR, Williams P (1985) Influence of substrate limitation and growth phase on sensitivity to antimicrobial agents. J Antimicrob Chemother 15 Suppl A:7–14PubMedCrossRefGoogle Scholar
  17. Busse JW, Bhandari M, Sprague S, Johnson-Masotti AP, Gafni A (2005) An economic analysis of management strategies for closed and open grade I tibial shaft fractures. Acta Orthop 76:705–712PubMedCrossRefGoogle Scholar
  18. Busse JW, Kaur J, Mollon B, Bhandari M, Tornetta P 3rd, Schünemann HJ, Guyatt GH (2009) Low intensity pulsed ultrasonography for fractures: systematic review of randomised controlled trials. BMJ 338:b351PubMedCentralPubMedCrossRefGoogle Scholar
  19. Canalis E, McCarthy TL, Centrella M (1989) Effects of platelet-derived growth factor on bone formation in vitro. J Cell Physiol 140:530–537PubMedCrossRefGoogle Scholar
  20. Celil AB, Campbell PG (2005) BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem 280:31353–31359PubMedCrossRefGoogle Scholar
  21. Chao YH, Tsuang YH, Sun JS, Cheng CK, Chen MH (2011) The cross-talk between transforming growth factor-beta1 and ultrasound stimulation during mechanotransduction of rat tenocytes. Connect Tissue Res 52:313–321PubMedCrossRefGoogle Scholar
  22. Chappell JC, Song J, Burke CW, Klibanov AL, Price RJ (2008) Targeted delivery of nanoparticles bearing fibroblast growth factor-2 by ultrasonic microbubble destruction for therapeutic arteriogenesis. Small 4:1769–1777PubMedCentralPubMedCrossRefGoogle Scholar
  23. Chen YJ, Kuo YR, Yang KD, Wang CJ, Sheen Chen SM, Huang HC, Yang YJ, Yi-Chih S, Wang FS (2004) Activation of extracellular signal-regulated kinase (ERK) and p38 kinase in shock wave-promoted bone formation of segmental defect in rats. Bone 34:466–477PubMedCrossRefGoogle Scholar
  24. Cheng K, Xia P, Lin Q, Shen S, Gao M, Ren S, Li X (2014) Effects of low-intensity pulsed ultrasound on integrin-FAK-PI3K/Akt mechanochemical transduction in rabbit osteoarthritis chondrocytes. Ultrasound Med Biol 40:1609–1618PubMedCrossRefGoogle Scholar
  25. Cheung WH, Chin WC, Wei FY, Li G, Leung KS (2013) Applications of exogenous mesenchymal stem cells and low intensity pulsed ultrasound enhance fracture healing in rat model. Ultrasound Med Biol 39:117–125PubMedCrossRefGoogle Scholar
  26. Choi HD, Noh WC, Park JW, Lee JM, Suh JY (2011) Analysis of gene expression during mineralization of cultured human periodontal ligament cells. J Periodontal Implant Sci 41:30–43PubMedCentralPubMedCrossRefGoogle Scholar
  27. Claes L, Willie B (2007) The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol 93:384–398PubMedCrossRefGoogle Scholar
  28. Costa P, Almeida FVM, Connelly JT (2012) Biophysical signals controlling cell fate decisions: how do stem cells really feel? Int J Biochem Cell Biol 44:2233–2237PubMedCrossRefGoogle Scholar
  29. Cui JH, Park K, Park SR, Min BH (2006) Effects of low-intensity ultrasound on chondrogenic differentiation of mesenchymal stem cells embedded in polyglycolic acid: an in vivo study. Tissue Eng 12:75–82PubMedCrossRefGoogle Scholar
  30. Cui JH, Park SR, Park S, Choi BH, Min BH (2007) Preconditioning of mesenchymal stem cells with low-intensity ultrasound for cartilage formation in vivo. Tissue Eng 1:351–360CrossRefGoogle Scholar
  31. Da Costa Gómez TM, Radtke CL, Kalscheur VL, Swain CA, Scollay MC, Edwards RB, Santschi EM, Markel MD, Muir P (2004) Effect of focused and radial extracorporeal shock wave therapy on equine bone microdamage. Vet Surg 33:49–55PubMedCrossRefGoogle Scholar
  32. Dalla-Bona DA, Tanaka E, Oka H, Yamano E, Kawai N, Miyauchi M, Takata T, Tanne K (2006) Effects of ultrasound on cementoblast metabolism in vitro. Ultrasound Med Biol 32:943–948PubMedCrossRefGoogle Scholar
  33. de Ávila Santana L, Alves JM, Andrade TA, Kajiwara JK, Garcia SB, Gomes FG, Frade MA (2013) Clinical and immunohistopathological aspects of venous ulcers treatment by Low-Intensity Pulsed Ultrasound (LIPUS). Ultrasonics 53:870–879PubMedCrossRefGoogle Scholar
  34. del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP (2009) Stretching single talin rod molecules activates vinculin binding. Science 323:638–641PubMedCrossRefGoogle Scholar
  35. Delius M, Jordan M, Liebich HG, Brendel W (1990) Biological effects of shock waves: effect of shock waves on the liver and gallbladder wall of dogs--administration rate dependence. Ultrasound Med Biol 16:459–466PubMedCrossRefGoogle Scholar
  36. den Dekker E, Molin DG, Breikers G, van Oerle R, Akkerman JW, van Eys GJ, Heemskerk JW (2001) Expression of transient receptor potential mRNA isoforms and Ca(2+) influx in differentiating human stem cells and platelets. Biochim Biophys Acta 1539:243–255CrossRefGoogle Scholar
  37. Ding X, Lin SC, Kiraly B, Yue H, Li S, Chiang IK, Benkovic SJ, Huang TJ (2012) On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc Natl Acad Sci USA 109:11105–11109Google Scholar
  38. Doan N, Reher P, Meghji S, Harris M (1999) In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes. J Oral Maxillofac Surg 57:409–419PubMedCrossRefGoogle Scholar
  39. D’Souza SJ, Pajak A, Balazso K, Dagnino L (2001) Ca2+ and BMP-6 signaling regulate E2F during epidermal keratinocyte differentiation. J Biol Chem 276:23531–23538PubMedCrossRefGoogle Scholar
  40. Duck FA (2011) A new definition for acoustic dose. J Phys Conf Ser 279:012006CrossRefGoogle Scholar
  41. Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, Amling M, Karsenty G (1999) A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 13:1025–1036PubMedCentralPubMedCrossRefGoogle Scholar
  42. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanonato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183PubMedCrossRefGoogle Scholar
  43. Ebisawa K, Hata K, Okada K, Kimata K, Ueda M, Torii S, Watanabe H (2004) Ultrasound enhances transforming growth factor beta-mediated chondrocyte differentiation of human mesenchymal stem cells. Tissue Eng 10:921–929PubMedCrossRefGoogle Scholar
  44. Echtermeyer F, Streit M, Wilcox-Adelman S, Saoncella S, Denhez F, Detmar M, Goetinck P (2001) Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J Clin Invest 107:R9–R14PubMedCentralPubMedCrossRefGoogle Scholar
  45. El-Bialy T, Alhadlaq A, Wong B, Kucharski C (2014) Ultrasound effect on neural differentiation of gingival stem/progenitor cells. Ann Biomed Eng 42:1406–1412PubMedCrossRefGoogle Scholar
  46. Elsner HI, Lindblad EB (1989) Ultrasonic degradation of DNA. DNA 8:697–701PubMedCrossRefGoogle Scholar
  47. Fabiilli ML, Wilson CG, Padilla F, Martin-Saavedra FM, Fowlkes JB, Franceschi RT (2013) Acoustic droplet-hydrogel composites for spatial and temporal control of growth factor delivery and scaffold stiffness. Acta Biomater 9:7399–7409PubMedCentralPubMedCrossRefGoogle Scholar
  48. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676PubMedCrossRefGoogle Scholar
  49. Foldager CB, Kearney C, Spector M (2012) Clinical application of extracorporeal shock wave therapy in orthopedics: focused versus unfocused shock waves. Ultrasound Med Biol 38:1673–1680PubMedCrossRefGoogle Scholar
  50. Fox SW, Chambers TJ, Chow JW (1996) Nitric oxide is an early mediator of the increase in bone formation by mechanical stimulation. Am J Physiol 270:E955–E960PubMedGoogle Scholar
  51. Fu N, Yang X, Ba K, Fu Y, Wei X, Yue Y, Li G, Yao Y, Chen J, Liang C, Ge Y, Lin Y (2013) Low-intensity pulsed ultrasound induced enhanced adipogenesis of adipose-derived stem cells. Cell Prolif 46:312–319PubMedCrossRefGoogle Scholar
  52. Fung CH, Cheung WH, Pounder NM, de Ana FJ, Harrison A, Leung KS (2012) Effects of different therapeutic ultrasound intensities on fracture healing in rats. Ultrasound Med Biol 38:745–752PubMedCrossRefGoogle Scholar
  53. Fung CH, Cheung WH, Pounder NM, Harrison A, Leung KS (2014) Osteocytes exposed to far field of therapeutic ultrasound promotes osteogenic cellular activities in pre-osteoblasts through soluble factors. Ultrasonics 54(5):1358–1365.Google Scholar
  54. Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88:873–884PubMedCrossRefGoogle Scholar
  55. Gerstenfeld LC, Alkhiary YM, Krall EA, Nicholls FH, Stapleton SN, Fitch JL, Bauer M, Kayal R, Graves DT, Jepsen KJ, Einhorn TA (2006) Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem 54:1215–1228PubMedCrossRefGoogle Scholar
  56. Gleizal A, Li S, Pialat JB, Beziat JL (2006) Transcriptional expression of calvarial bone after treatment with low-intensity ultrasound: an in vitro study. Ultrasound Med Biol 32:1569–1574PubMedCrossRefGoogle Scholar
  57. Globus RK, Patterson-Buckendahl P, Gospodarowicz D (1988) Regulation of bovine bone cell proliferation by fibroblast growth factor and transforming growth factor beta. Endocrinology 123:98–105PubMedCrossRefGoogle Scholar
  58. Griffin XL, Parsons N, Costa ML, Metcalfe D (2014) Ultrasound and shockwave therapy for acute fractures in adults. Cochrane Database Syst Rev 6:CD008579PubMedGoogle Scholar
  59. Halder G, Dupont S, Piccolo S (2012) Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 13:591–600PubMedCrossRefGoogle Scholar
  60. Hannemann PF, Mommers EH, Schots JP, Brink PR, Poeze M (2014) The effects of low-intensity pulsed ultrasound and pulsed electromagnetic fields bone growth stimulation in acute fractures: a systematic review and meta-analysis of randomized controlled trials. Arch Orthop Trauma Surg 134:1093–1106PubMedCrossRefGoogle Scholar
  61. Harle J, Mayia F, Olsen I, Salih V (2005) Effects of ultrasound on transforming growth factor-beta genes in bone cells. Eur Cell Mater 10:70–76PubMedGoogle Scholar
  62. Hasegawa T, Miwa M, Sakai Y, Niikura T, Kurosaka M, Komori T (2009) Osteogenic activity of human fracture haematoma-derived progenitor cells is stimulated by low-intensity pulsed ultrasound in vitro. The Journal of bone and joint surgery. British volume 91(2):264–270.Google Scholar
  63. Hassan MA, Ahmed IS, Campbell P, Kondo T (2012) Enhanced gene transfection using calcium phosphate co-precipitates and low-intensity pulsed ultrasound. Eur J Pharm Sci 47:768–773PubMedCrossRefGoogle Scholar
  64. Hawley SA, Macleod RM, Dunn F (1963) Degradation of DNA by intense, noncavitating ultrasound. J Acoust Soc Am 35:1285CrossRefGoogle Scholar
  65. Hayek A, Culler FL, Beattie GM, Lopez AD, Cuevas P, Baird A (1987) An in vivo model for study of the angiogenic effects of basic fibroblast growth factor. Biochem Biophys Res Commun 147:876–880PubMedCrossRefGoogle Scholar
  66. Hayton MJ, Dillon JP, Glynn D, Curran JM, Gallagher JA, Buckley KA (2005) Involvement of adenosine 5’-triphosphate in ultrasound-induced fracture repair. Ultrasound Med Biol 31:1131–1138PubMedCrossRefGoogle Scholar
  67. Heckman JD, Sarasohn-Kahn J (1997) The economics of treating tibia fractures. The cost of delayed unions. Bull Hosp Jt Dis 56:63–72PubMedGoogle Scholar
  68. Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF (1994) Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg 76:26–34PubMedGoogle Scholar
  69. Heldin CH, Miyazono K, Ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471PubMedCrossRefGoogle Scholar
  70. Hensel K, Mienkina MP, Schmitz G (2011) Analysis of ultrasound fields in cell culture wells for in vitro ultrasound therapy experiments. Ultrasound Med Biol 37:2105–2115PubMedCrossRefGoogle Scholar
  71. Hollister SJ (2009) Scaffold design and manufacturing: from concept to clinic. Adv Mater 21:3330–3342PubMedCrossRefGoogle Scholar
  72. Hou CH, Lin J, Huang SC, Hou SM, Tang CH (2009) Ultrasound stimulates NF-kappaB activation and iNOS expression via the Ras/Raf/MEK/ERK signaling pathway in cultured preosteoblasts. J Cell Physiol 220:196–203PubMedCrossRefGoogle Scholar
  73. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Wang L, Xia XZ, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass MB, Boyle WJ (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96:3540–3545Google Scholar
  74. Hu B, Zhang Y, Zhou J, Li J, Deng F, Wang Z, Song J (2014) Low-intensity pulsed ultrasound stimulation facilitates osteogenic differentiation of human periodontal ligament cells. PLoS One 9:e95168PubMedCentralPubMedCrossRefGoogle Scholar
  75. Humphrey VF (2007) Ultrasound and matter--physical interactions. Prog Biophys Mol Biol 93:195–211PubMedCrossRefGoogle Scholar
  76. Ikeda K, Takayama T, Suzuki N, Shimada K, Otsuka K, Ito K (2006) Effects of low-intensity pulsed ultrasound on the differentiation of C2C12 cells. Life Sci 79:1936–1943PubMedCrossRefGoogle Scholar
  77. Imai Y, Hasegawa T, Takeda D, Akashi M, Lee SY, Niikura T, Shibuya Y, Kurosaka M, Komori T (2014) The osteogenic activity of human mandibular fracture haematoma-derived cells is stimulated by low-intensity pulsed ultrasound in vitro. Int J Oral Maxillofac Surg 43:367–372PubMedCrossRefGoogle Scholar
  78. Ingber D (1991) Integrins as mechanochemical transducers. Curr Opin Cell Biol 3:841–848PubMedCrossRefGoogle Scholar
  79. Ishiduka Y, Mochizuki R, Yanai K, Takatsuka M, Nonomura T, Niida S, Horiguchi H, Maeda N, Fukamizu A (1999) Induction of hydroxyapatite resorptive activity in bone marrow cell populations resistant to bafilomycin A1 by a factor with restricted expression to bone and brain, neurochondrin. Biochim Biophys Acta 1450:92–98PubMedCrossRefGoogle Scholar
  80. Ito M, Azuma Y, Ohta T, Komoriya K (2000) Effects of ultrasound and 1,25-dihydroxyvitamin D3 on growth factor secretion in co-cultures of osteoblasts and endothelial cells. Ultrasound Med Biol 26:161–166PubMedCrossRefGoogle Scholar
  81. Iwabuchi S, Ito M, Hata J, Chikanishi T, Azuma Y, Haro H (2005) In vitro evaluation of low-intensity pulsed ultrasound in herniated disc resorption. Biomaterials 26:7104–7114PubMedCrossRefGoogle Scholar
  82. Iwabuchi S, Ito M, Chikanishi T, Azuma Y, Haro H (2008) Role of the tumor necrosis factor-alpha, cyclooxygenase-2, prostaglandin E2, and effect of low-intensity pulsed ultrasound in an in vitro herniated disc resorption model. J Orthop Res 26:1274–1278PubMedCrossRefGoogle Scholar
  83. Iwabuchi Y, Tanimoto K, Tanne Y, Inubushi T, Kamiya T, Kunimatsu R, Hirose N, Mitsuyoshi T, Su S, Tanake E, Tanne K (2014) Effects of low-intensity pulsed ultrasound on the expression of cyclooxygenase-2 in mandibular condylar chondrocytes. J Oral Facial Pain Headache 28:261–268PubMedCrossRefGoogle Scholar
  84. Jang KW, Ding L, Seol D, Lim T, Buckwalter JA, Martin JA (2014) Low-intensity pulsed ultrasound promotes chondrogenic progenitor cell migration via focal adhesion kinase pathway. Ultrasound Med Biol 40:1177–1186PubMedCentralPubMedCrossRefGoogle Scholar
  85. Johns LD (2002) Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis. J Athl Train 37:293–299PubMedCentralPubMedGoogle Scholar
  86. Khan Y, Laurencin CT (2008) Fracture repair with ultrasound: clinical and cell-based evaluation. J Bone Joint Surg 90:138–144PubMedCrossRefGoogle Scholar
  87. Kilian O, Flesch I, Wenisch S, Taborski B, Jork A, Schnettler R, Jonuleit T (2004) Effects of platelet growth factors on human mesenchymal stem cells and human endothelial cells in vitro. Eur J Med Res 9:337–344PubMedGoogle Scholar
  88. Kim SJ, Kim SY, Kwon CH, Kim YK (2007) Differential effect of FGF and PDGF on cell proliferation and migration in osteoblastic cells. Growth Factors 25:77–86PubMedCrossRefGoogle Scholar
  89. Kim K, Jeong CG, Hollister SJ (2008) Non-invasive monitoring of tissue scaffold degradation using ultrasound elasticity imaging. Acta Biomater 4:783–790PubMedCentralPubMedCrossRefGoogle Scholar
  90. Kim TJ, Seong J, Ouyang M, Sun J, Lu S, Hong JP, Wang N, Wang Y (2009) Substrate rigidity regulates Ca2+ oscillation via RhoA pathway in stem cells. J Cell Physiol 218:285–293PubMedCentralPubMedCrossRefGoogle Scholar
  91. Kirstein M, Baglioni C (1988) Tumor necrosis factor stimulates proliferation of human osteosarcoma cells and accumulation of c-myc messenger RNA. J Cell Physiol 134:479–484PubMedCrossRefGoogle Scholar
  92. Klionsky DJ, Abdalla FC, Abeliovich H et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544PubMedCentralPubMedCrossRefGoogle Scholar
  93. Kobayashi T, Sokabe M (2010) Sensing substrate rigidity by mechanosensitive ion channels with stress fibers and focal adhesions. Curr Opin Cell Biol 22:669–676PubMedCrossRefGoogle Scholar
  94. Kobayashi Y, Sakai D, Iwashina S, Iwabuchi S, Mochida J (2009) Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line. Eur Cell Mater 17:15–22PubMedGoogle Scholar
  95. Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1801PubMedCrossRefGoogle Scholar
  96. Kokubu T, Matsui N, Fujioka H, Tsunoda M, Mizuno K (1999) Low intensity pulsed ultrasound exposure increases prostaglandin E2 production via the induction of cyclooxygenase-2 mRNA in mouse osteoblasts. Biochem Biophys Res Commun 256:284–287PubMedCrossRefGoogle Scholar
  97. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764PubMedCrossRefGoogle Scholar
  98. Kopf J, Petersen A, Duda GN, Knaus P (2012) BMP2 and mechanical loading cooperatively regulate immediate early signalling events in the BMP pathway. BMC Biol 10:37PubMedCentralPubMedCrossRefGoogle Scholar
  99. Krasovitski B, Frenkel V, Shoham S, Kimmel E (2011) Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci USA 108:3258–3263Google Scholar
  100. Kristiansen TK, Ryaby JP, McCabe J, Frey JJ, Roe LR (1997) Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study. J Bone Joint Surg 79:961–973PubMedGoogle Scholar
  101. Kruse DE, Mackanos MA, O’Connell-Rodwell CE, Contag CH, Ferrara KW (2008) Short-duration-focused ultrasound stimulation of Hsp70 expression in vivo. Phys Med Biol 53:3641–3660PubMedCentralPubMedCrossRefGoogle Scholar
  102. Kumagai K, Takeuchi R, Ishikawa H, Yamaguchi Y, Fujisawa T, Kuniya T, Takagawa S, Muschler GF, Saito T (2012) Low-intensity pulsed ultrasound accelerates fracture healing by stimulation of recruitment of both local and circulating osteogenic progenitors. J Orthop Res 30:1516–1521PubMedCrossRefGoogle Scholar
  103. Kuo JC, Han X, Hsiao CT, Yates JR 3rd, Waterman CM (2011) Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation. Nat Cell Biol 13:383–393PubMedCentralPubMedCrossRefGoogle Scholar
  104. Kusano K, Miyaura C, Inada M, Tamura T, Ito A, Nagase H, Kamoi K, Suda T (1998) Regulation of matrix metalloproteinases (MMP-2, -3, -9, and -13) by interleukin-1 and interleukin-6 in mouse calvaria: association of MMP induction with bone resorption. Endocrinology 139:1338–1345PubMedGoogle Scholar
  105. Kusuyama J, Bandow K, Shamoto M, Kakimoto K, Ohnishi T, Matsuguchi T (2014) Low Intensity Pulsed Ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK- signaling pathway. J Biol Chem 289:10330–10344PubMedCentralPubMedCrossRefGoogle Scholar
  106. Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176PubMedCrossRefGoogle Scholar
  107. Lai CH, Chen SC, Chiu LH, Yang CB, Tsai YH, Zuo CS, Chang WH, Lai WF (2010) Effects of low-intensity pulsed ultrasound, dexamethasone/TGF-beta1 and/or BMP-2 on the transcriptional expression of genes in human mesenchymal stem cells: chondrogenic vs. osteogenic differentiation. Ultrasound Med Biol 36:1022–1033PubMedCrossRefGoogle Scholar
  108. Lee HJ, Choi BH, Min BH, Son YS, Park SR (2006) Low-intensity ultrasound stimulation enhances chondrogenic differentiation in alginate culture of mesenchymal stem cells. Artificial organs 30(9):707–715.Google Scholar
  109. Lee SY, Koh A, Niikura T, Oe K, Koga T (2013) Low-intensity pulsed ultrasound enhances BMP-7-induced osteogenic differentiation of human fracture hematoma-derived progenitor cells in vitro. J Orthop Trauma 27:29–33PubMedCrossRefGoogle Scholar
  110. Leskinen JJ, Hynynen K (2012) Study of factors affecting the magnitude and nature of ultrasound exposure with in vitro set-ups. Ultrasound Med Biol 38:777–794PubMedCrossRefGoogle Scholar
  111. Li JG, Chang WH, Lin JC, Sun JS (2002) Optimum intensities of ultrasound for PGE(2) secretion and growth of osteoblasts. Ultrasound Med Biol 28:683–690PubMedCrossRefGoogle Scholar
  112. Li A, Dubey S, Varney ML, Dave BJ, Singh RK (2003a) IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170:3369–3376PubMedCrossRefGoogle Scholar
  113. Li JK, Chang WH, Lin JC, Ruaan RC, Liu HC, Sun JS (2003b) Cytokine release from osteoblasts in response to ultrasound stimulation. Biomaterials 24:2379–2385PubMedCrossRefGoogle Scholar
  114. Li D, Tang T, Lu J, Dai K (2009) Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor. Tissue Eng 15:2773–2783CrossRefGoogle Scholar
  115. Liedert A, Kaspar D, Blakytny R, Claes L, Ignatius A (2006) Signal transduction pathways involved in mechanotransduction in bone cells. Biochem Biophys Res Commun 349:1–5PubMedCrossRefGoogle Scholar
  116. Louw TM, Budhiraja G, Viljoen HJ, Subramanian A (2013) Mechanotransduction of ultrasound is frequency dependent below the cavitation threshold. Ultrasound Med Biol 39:1303–1319PubMedCentralPubMedCrossRefGoogle Scholar
  117. Lu H, Qin L, Lee K, Cheung W, Chan K, Leung K (2009) Identification of genes responsive to low-intensity pulsed ultrasound stimulations. Biochem Biophys Res Commun 378:569–573PubMedCrossRefGoogle Scholar
  118. Lv Y, Zhao P, Chen G, Sha Y, Yang L (2013) Effects of low-intensity pulsed ultrasound on cell viability, proliferation and neural differentiation of induced pluripotent stem cells-derived neural crest stem cells. Biotechnol Lett 35:2201–2212PubMedCrossRefGoogle Scholar
  119. Ma HZ, Zeng BF, Li XL (2007) Upregulation of VEGF in subchondral bone of necrotic femoral heads in rabbits with use of extracorporeal shock waves. Calcif Tissue Int 81:124–131PubMedCrossRefGoogle Scholar
  120. Machado CB, de Albuquerque Pereira WC, Talmant M, Padilla F, Laugier P (2010) Computational evaluation of the compositional factors in fracture healing affecting ultrasound axial transmission measurements. Ultrasound Med Biol 36:1314–1326PubMedCrossRefGoogle Scholar
  121. Machado CB, Pereira WC, Granke M, Talmant M, Padilla F, Laugier P (2011) Experimental and simulation results on the effect of cortical bone mineralization in ultrasound axial transmission measurements: a model for fracture healing ultrasound monitoring. Bone 48:1202–1209PubMedCrossRefGoogle Scholar
  122. Maddi A, Hai H, Ong ST, Sharp L, Harris M, Meghji S (2006) Long wave ultrasound may enhance bone regeneration by altering OPG/RANKL ratio in human osteoblast-like cells. Bone 39:283–288PubMedCrossRefGoogle Scholar
  123. Mahoney CM, Morgan MR, Harrison A, Humphries MJ, Bass MD (2009) Therapeutic ultrasound bypasses canonical syndecan-4 signaling to activate rac1. J Biol Chem 284:8898–8909PubMedCentralPubMedCrossRefGoogle Scholar
  124. Malizos KN, Hantes ME, Protopappas V, Papachristos A (2006) Low-intensity pulsed ultrasound for bone healing: an overview. Injury 37:S56–S62PubMedCrossRefGoogle Scholar
  125. Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR (2007) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci USA 104:13325–13330Google Scholar
  126. Martinez de Albornoz P, Khanna A, Longo UG, Forriol F, Maffulli N (2011) The evidence of low-intensity pulsed ultrasound for in vitro, animal and human fracture healing. Br Med Bull 100:39–57PubMedCrossRefGoogle Scholar
  127. Marvel S, Okrasinski S, Bernacki SH, Loboa E, Dayton PA (2010) The development and validation of a LIPUS system with preliminary observations of ultrasonic effects on human adult stem cells. IEEE Trans Ultrason Ferroelectr Freq Control 57:1977–1984PubMedCrossRefGoogle Scholar
  128. Mather ML, Crowe JA, Morgan SP, White LJ, Kalashikov AN, Ivchenko VG, Howdle SM, Shakesheff KM (2008) Ultrasonic monitoring of foamed polymeric tissue scaffold fabrication. J Mater Sci 19:3071–3080Google Scholar
  129. Mayr E, Frankel V, Rüter A (2000) Ultrasound – an alternative healing method for nonunions? Arch Orthop Trauma Surg 120(1-2):1-8.Google Scholar
  130. Mehier-Humbert S, Yan F, Frinking P, Scheinder M, Ruy RH, Bettinger T (2007) Ultrasound-mediated gene delivery: influence of contrast agent on transfection. Bioconjug Chem 18:652–662PubMedCrossRefGoogle Scholar
  131. Mizrahi N, Zhou EH, Lenormand G, Krishnan R, Weihs D, Butler JP, Weitz DA, Fredberg JJ, Kimmel E (2012) Low intensity ultrasound perturbs cytoskeleton dynamics. Soft Matter 8:2438–2443PubMedCentralPubMedCrossRefGoogle Scholar
  132. Mont MA, Jones LC, Seyler TM, Marulanda GA, Saleh KJ, Delanois RE (2007) New treatment approaches for osteonecrosis of the femoral head: an overview. Instr Course Lect 56:197–212PubMedGoogle Scholar
  133. Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L (1986) Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci USA 83:7297–7301Google Scholar
  134. Morris HL, Reed CI, Haycock JW, Reilly GC (2010) Mechanisms of fluid-flow-induced matrix production in bone tissue engineering. Proc Inst Mech Eng H 224:1509–1521PubMedCrossRefGoogle Scholar
  135. Morse R, La LD, Magin RL, Dunn F (1999) Ultrasound interaction with large unilamellar vesicles at the phospholipid phase transition: perturbation by phospholipid side chain substitution with deuterium. Chem Phys Lipids 103:1–10PubMedCrossRefGoogle Scholar
  136. Moustakas A, Heldin CH (2005) Non-Smad TGF-beta signals. J Cell Sci 118:3573–3584PubMedCrossRefGoogle Scholar
  137. Mukai S, Ito H, Nakagawa Y, Akiyama H, Miyamoto M, Nakamura T (2005) Transforming growth factor-beta1 mediates the effects of low-intensity pulsed ultrasound in chondrocytes. Ultrasound Med Biol 31:1713–1721PubMedCrossRefGoogle Scholar
  138. Nakamura T, Fujihara S, Yamamoto-Nagata K, Katsura T, Inubushi T, Tanaka E (2011) Low-intensity pulsed ultrasound reduces the inflammatory activity of synovitis. Ann Biomed Eng 39:2964–2971PubMedCrossRefGoogle Scholar
  139. Nakao J, Fujii Y, Kusuyama J, Bandow K, Kakimoto K, Ohnishi T, Matsuguchi T (2014) Low-intensity pulsed ultrasound (LIPUS) inhibits LPS-induced inflammatory responses of osteoblasts through TLR4-MyD88 dissociation. Bone 58:17–25PubMedCrossRefGoogle Scholar
  140. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29PubMedCrossRefGoogle Scholar
  141. Narasaki K, Shimizu H, Beppu M, Aoki H, Takagi M, Takashi M (2003) Effect of extracorporeal shock waves on callus formation during bone lengthening. J Orthop Sci 8:474–481PubMedCrossRefGoogle Scholar
  142. Naruse K, Mikuni-Takagaki Y, Azuma Y, Ito M, Oota T, Kameyama K, Itoman M (2000) Anabolic response of mouse bone-marrow-derived stromal cell clone ST2 cells to low-intensity pulsed ultrasound. Biochem Biophys Res Commun 268:216–220PubMedCrossRefGoogle Scholar
  143. Naruse K, Miyauchi A, Itoman M, Mikuni-Takagaki Y (2003) Distinct anabolic response of osteoblast to low-intensity pulsed ultrasound. J Bone Miner Res 18:360–369PubMedCrossRefGoogle Scholar
  144. Nefussi JR, Baron R (1985) PGE2 stimulates both resorption and formation of bone in vitro: differential responses of the periosteum and the endosteum in fetal rat long bone cultures. Anat Rec 211:9–16PubMedCrossRefGoogle Scholar
  145. Nolte PA, van der Krans A, Patka P, Janssen M, Ryaby JP, Albers GH (2001) Low-intensity pulsed ultrasound in the treatment of nonunions. J Trauma 51:693–702; discussion 702–703PubMedCrossRefGoogle Scholar
  146. Nowicki A, Kowalewski T, Secomski W, Wojcik J (1998) Estimation of acoustical streaming: theoretical model, Doppler measurements and optical visualisation. Eur J Ultrasound 7:73–81PubMedCrossRefGoogle Scholar
  147. O’Brien WD (2007) Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol 93:212–255PubMedCentralPubMedCrossRefGoogle Scholar
  148. Or M, Kimmel E (2009) Modeling linear vibration of cell nucleus in low intensity ultrasound field. Ultrasound Med Biol 35:1015–1025PubMedCrossRefGoogle Scholar
  149. Otani K, Yamahara K, Ohnishi S, Obata H, Kitamura S, Nagaya N (2009) Nonviral delivery of siRNA into mesenchymal stem cells by a combination of ultrasound and microbubbles. J Control Release 133:146–153PubMedCrossRefGoogle Scholar
  150. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771PubMedCrossRefGoogle Scholar
  151. Padilla F, Cleveland R (2009) Numerical simulation of shock wave propagation in fractured cortical bone. AIP Conf Proc 1113:185–189CrossRefGoogle Scholar
  152. Padilla F, Puts R, Vico L, Raum K (2014) Stimulation of bone repair with ultrasound: a review of the possible mechanic effects. Ultrasonics 54(5):1125-45. doi:  10.1016/j.ultras.2014.01.004.
  153. Park H, Yip MC, Chertok B, Kost J, Kobler JB, Langer R, Zeitels SM (2010) Indirect low-intensity ultrasonic stimulation for tissue engineering. J Tissue Eng 2010:973530PubMedCentralPubMedCrossRefGoogle Scholar
  154. Parker NG, Mather ML, Morgan SP, Povey MJ (2011) Longitudinal acoustic properties of poly(lactic acid) and poly(lactic-co-glycolic acid). Biomed Mater 5:055004CrossRefGoogle Scholar
  155. Parvizi J, Parpura V, Greenleaf JF, Bolander ME (2002) Calcium signaling is required for ultrasound-stimulated aggrecan synthesis by rat chondrocytes. J Orthop Res 20:51–57PubMedCrossRefGoogle Scholar
  156. Peterson RV, Pitt WG (2000) The effect of frequency and power density on the ultrasonically-enhanced killing of biofilm-sequestered Escherichia coli. Colloids Surf B Biointerfaces 17:219–227CrossRefGoogle Scholar
  157. Pinkerton J (1949) The absorption of ultrasonic waves in liquids and its relation to molecular constitution. Proc Phys Soc B 62:129CrossRefGoogle Scholar
  158. Pisanti P, Yeatts AB, Cardea S, Fisher JP, Reverchon E (2012) Tubular perfusion system culture of human mesenchymal stem cells on poly-L-lactic acid scaffolds produced using a supercritical carbon dioxide-assisted process. J Biomed Mater Res A 100:2563–2572PubMedCentralPubMedCrossRefGoogle Scholar
  159. Pitt WG, Ross SA (2003) Ultrasound increases the rate of bacterial cell growth. Biotechnol Prog 19:1038–1044PubMedCentralPubMedCrossRefGoogle Scholar
  160. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  161. Potier E, Ferreira E, Andriamanalijaona R, Pujol JP, Oudina K, Logeart-Avramoglou D, Petite H (2007) Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression. Bone 40:1078–1087PubMedCrossRefGoogle Scholar
  162. Potsika VT, Grivas KN, Protopappas VC, Vavva MG, Raum K, Rohrbach D, Polyzos D, Fotiadis DJ (2013) Application of an effective medium theory for modeling ultrasound wave propagation in healing long bones. Ultrasonics 54:1219–1230PubMedCrossRefGoogle Scholar
  163. Pounder NM, Harrison AJ (2008) Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. Ultrasonics 48:330–338PubMedCrossRefGoogle Scholar
  164. Protopappas VC, Vavva MG, Fotiadis DI, Malizos KN (2008) Ultrasonic monitoring of bone fracture healing. IEEE Trans Ultrason Ferroelectr Freq Control 55:1243–1255PubMedCrossRefGoogle Scholar
  165. Radomsky ML, Thompson AY, Spiro RC, Poser JW (1998) Potential role of fibroblast growth factor in enhancement of fracture healing. Clin Orthop Relat Res 355(Suppl):S283–S293PubMedCrossRefGoogle Scholar
  166. Rassweiler JJ, Knoll T, Köhrmann KU, McAteer JA, Lingeman JE, Cleveland RO, Bailey MR, Chaussy C (2011) Shock wave technology and application: an update. Eur Urol 59:784–796PubMedCentralPubMedCrossRefGoogle Scholar
  167. Reher P, Elbeshir el-NI, Harvey W, Meghji S, Harris M (1997) The stimulation of bone formation in vitro by therapeutic ultrasound. Ultrasound Med Biol 23:1251–1258Google Scholar
  168. Reher P, Doan N, Bradnock B, Meghji S, Harris M (1998) Therapeutic ultrasound for osteoradionecrosis: an in vitro comparison between 1 MHz and 45 kHz machines. Eur J Cancer 34:1962–1968PubMedCrossRefGoogle Scholar
  169. Reher P, Harris M, Whiteman M, Hai HK, Meghji S (2002) Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblasts. Bone 31:236–241PubMedCrossRefGoogle Scholar
  170. Ren L, Yang Z, Song J, Wang Z, Deng F, Li W (2013) Involvement of p38 MAPK pathway in low intensity pulsed ultrasound induced osteogenic differentiation of human periodontal ligament cells. Ultrasonics 53:686–690PubMedCrossRefGoogle Scholar
  171. Ricardo M (2006) The effect of ultrasound on the healing of muscle-pediculated bone graft in scaphoid non-union. Int Orthop 30:123–127PubMedCentralPubMedCrossRefGoogle Scholar
  172. Rohrbach D, Preininger B, Hesse B, Gerigk H, Perka C, Raum K (2013) The early phases of bone healing can be differentiated in a rat osteotomy model by focused transverse-transmission ultrasound. Ultrasound Med Biol 39:1642–1653PubMedCrossRefGoogle Scholar
  173. Romano CL, Romano D, Logoluso N (2009) Low-intensity pulsed ultrasound for the treatment of bone delayed union or nonunion: a review. Ultrasound Med Biol 35:529–536PubMedCrossRefGoogle Scholar
  174. Roper J, Harrison A, Bass MD (2012) Induction of adhesion-dependent signals using low-intensity ultrasound. J Vis Exp 63:e4024PubMedGoogle Scholar
  175. Ruschke K, Hiepen C, Becker J, Knaus P (2012) BMPs are mediators in tissue crosstalk of the regenerating musculoskeletal system. Cell Tissue Res 347:521–544PubMedCrossRefGoogle Scholar
  176. Ryoo HM, Hoffmann HM, Beumer T, Frenkel B, Towler DA, Stein GS, Stein JL, van Wijnen AJ, Lian JB (1997) Stage-specific expression of Dlx-5 during osteoblast differentiation: involvement in regulation of osteocalcin gene expression. Mol Endocrinol 11:1681–1694PubMedCrossRefGoogle Scholar
  177. Sant’Anna EF, Leven RM, Virdi AS, Sumner DR (2005) Effect of low intensity pulsed ultrasound and BMP-2 on rat bone marrow stromal cell gene expression. J Orthop Res 23:646–652PubMedCrossRefGoogle Scholar
  178. Sarvazyan AP (1991) Ultrasonic velocimetry of biological compounds. Ann Rev Biophys Biophys Chem 20:321–342CrossRefGoogle Scholar
  179. Sarvazyan AP, Rudenko OV, Nyborg WL (2010) Biomedical applications of radiation force of ultrasound: historical roots and physical basis. Ultrasound Med Biol 36:1379–1394PubMedCrossRefGoogle Scholar
  180. Sato M, Nagata K, Kuroda S, Horiuchi S, Nakamura T, Karima M, Inubushi T, Tanaka E (2014) Low-intensity pulsed ultrasound activates integrin-mediated mechanotransduction pathway in synovial cells. Ann Biomed Eng 42:2156–2163PubMedCrossRefGoogle Scholar
  181. Schiller HB, Friedel CC, Boulegue C, Fässler R (2011) Quantitative proteomics of the integrin adhesome show a myosin II-dependent recruitment of LIM domain proteins. EMBO Rep 12:259–266PubMedCentralPubMedCrossRefGoogle Scholar
  182. Schofer MD, Block JE, Aigner J, Schmelz A (2010) Improved healing response in delayed unions of the tibia with low-intensity pulsed ultrasound: results of a randomized sham-controlled trial. BMC Musculoskelet Disord 11:229PubMedCentralPubMedCrossRefGoogle Scholar
  183. Schumann D, Kujat R, Zellner J, Angele MK, Nerlich M, Mayr E, Angele P (2006) Treatment of human mesenchymal stem cells with pulsed low intensity ultrasound enhances the chondrogenic phenotype in vitro. Biorheology 43:431–443PubMedGoogle Scholar
  184. Sena K, Leven RM, Mazhar K, Sumner DR, Virdi AS (2005) Early gene response to low-intensity pulsed ultrasound in rat osteoblastic cells. Ultrasound Med Biol 31:703–708PubMedCrossRefGoogle Scholar
  185. Sena K, Angle SR, Kanaji A, Aher C, Karwo DG, Sumner DR, Virdi AS (2011) Low-intensity pulsed ultrasound (LIPUS) and cell-to-cell communication in bone marrow stromal cells. Ultrasonics 51:639–644PubMedCrossRefGoogle Scholar
  186. Sharili AS, Connelly JT (2014) Nucleocytoplasmic shuttling: a common theme in mechanotransduction. Biochem Soc Trans 42:645–649PubMedCrossRefGoogle Scholar
  187. Shen B, Wei A, Whittaker S, Williams LA, Tao H, Ma DD, Diwan AD (2010) The role of BMP-7 in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in vitro. J Cell Biochem 109:406–416PubMedGoogle Scholar
  188. Sheyn D, Kimelman-Bleich N, Pelled G, Zilberman Y, Gazit D, Gazit Z (2008) Ultrasound-based nonviral gene delivery induces bone formation in vivo. Gene Ther 15:257–266PubMedCrossRefGoogle Scholar
  189. Siggelkow H, Niedhart C, Kurre W, Ihbe A, Schulz A, Atkinson MJ, Hüfner M (1998) In vitro differentiation potential of a new human osteosarcoma cell line (HOS 58). Differentiation 63:81–91PubMedCrossRefGoogle Scholar
  190. Stein GS, Lian JB, Stein JL, Van Wijnen AJ, Montecino M (1996) Transcriptional control of osteoblast growth and differentiation. Physiol Rev 76:593–629PubMedGoogle Scholar
  191. Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 99:9656–9661Google Scholar
  192. Sun JS, Hong RC, Chang WH, Chen LT, Lin FH, Liu HC (2001) In vitro effects of low-intensity ultrasound stimulation on the bone cells. J Biomed Mater Res 57:449–456PubMedCrossRefGoogle Scholar
  193. Sun S, Liu Y, Lipsky S, Cho M (2007) Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. FASEB J 21:1472–1480PubMedCrossRefGoogle Scholar
  194. Suva LJ, Towler DA, Harada S, Gaub MP, Rodan GA (2013) Characterization of retinoic acid- and cell-dependent sequences which regulate zif268 gene expression in osteoblastic cells. Mol Endocrinol 8:1507–1520Google Scholar
  195. Suzuki A, Takayama T, Suzuki N, Kojima T, Ota N, Asano S, Ito K (2009a) Daily low-intensity pulsed ultrasound stimulates production of bone morphogenetic protein in ROS 17/2.8 cells. J Oral Sci 51:29–36PubMedCrossRefGoogle Scholar
  196. Suzuki A, Takayama T, Suzuki N, Sato M, Fukuda T, Ito K (2009b) Daily low-intensity pulsed ultrasound-mediated osteogenic differentiation in rat osteoblasts. Acta Biochim Biophys Sin 41:108–115PubMedCrossRefGoogle Scholar
  197. Takeuchi R, Ryo A, Komitsu N, Mikuni-Takagaki Y, Fukui A, Shiraishi T, Morishita S, Yamazaki Y, Kumagai K, Aoki I, Saito T (2008) Low-intensity pulsed ultrasound activates the phosphatidylinositol 3 kinase/Akt pathway and stimulates the growth of chondrocytes in three-dimensional cultures: a basic science study. Arthritis Res Ther 10:R77PubMedCentralPubMedCrossRefGoogle Scholar
  198. Tang CH, Yang RS, Huang TH, Lu DY, Chuang WJ, Huang TF, Fu WM (2006) Ultrasound stimulates cyclooxygenase-2 expression and increases bone formation through integrin, focal adhesion kinase, phosphatidylinositol 3-kinase, and Akt pathway in osteoblasts. Mol Pharmacol 69:2047–2057PubMedCrossRefGoogle Scholar
  199. Temiyasathit S, Jacobs CR (2010) Osteocyte primary cilium and its role in bone mechanotransduction. Ann N Y Acad Sci 1192:422–428PubMedCentralPubMedCrossRefGoogle Scholar
  200. Tsai CL, Chang WH, Liu TK (1992) Preliminary studies of duration and intensity of ultrasonic treatments on fracture repair. Chin J Physiol 35:21–26PubMedGoogle Scholar
  201. Uddin SMZ, Qin YX (2013) Enhancement of osteogenic differentiation and proliferation in human mesenchymal stem cells by a modified low intensity ultrasound stimulation under simulated microgravity. PLoS One 8:e73914PubMedCentralPubMedCrossRefGoogle Scholar
  202. Ulbricht A, Höhfeld J (2013) Tension-induced autophagy: may the chaperone be with you. Autophagy 9:920–922PubMedCentralPubMedCrossRefGoogle Scholar
  203. Ulbricht A, Eppler FJ, Tapia VE et al (2013) Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Curr Biol 23:430–435PubMedCrossRefGoogle Scholar
  204. Unsworth J, Kaneez S, Harris S, Ridgway J, Fenwick S, Chenery D, Harrison A (2007) Pulsed low intensity ultrasound enhances mineralisation in preosteoblast cells. Ultrasound Med Biol 33:1468–1474PubMedCrossRefGoogle Scholar
  205. Volkmer E, Drosse I, Otto S, Stangelmayer A, Stengele M, Kallukalam BC, Mutscher W, Schieker M (2008) Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng 14:1331–1340CrossRefGoogle Scholar
  206. Walters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–323PubMedCentralPubMedCrossRefGoogle Scholar
  207. Wang SJ, Lewallen DG, Bolander ME, Chao EY, Ilstrup DM, Greenleaf JF (1994) Low intensity ultrasound treatment increases strength in a rat femoral fracture model. J Orthop Res 12:40–47PubMedCrossRefGoogle Scholar
  208. Wang FS, Wang CJ, Huang HJ, Chung H, Chen RF, Yang KD (2001) Physical shock wave mediates membrane hyperpolarization and Ras activation for osteogenesis in human bone marrow stromal cells. Biochem Biophys Res Commun 287:648–655PubMedCrossRefGoogle Scholar
  209. Wang CJ, Wang FS, Yang KD, Weng LH, Hsu CC, Huang CS, Yang LC (2003a) Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits. J Orthop Res 21:984–989PubMedCrossRefGoogle Scholar
  210. Wang FS, Yan KD, Kuo YR, Wang CJ, Sheen-Chen SM, Huang HC, Chen YJ (2003b) Temporal and spatial expression of bone morphogenetic proteins in extracorporeal shock wave-promoted healing of segmental defect. Bone 32:387–396PubMedCrossRefGoogle Scholar
  211. Wang FS, Kuo YR, Wang CJ, Yang KD, Chang PR, Huang YT, Huang HC, Syn YC, Yang YJ, Chen YJ (2004) Nitric oxide mediates ultrasound-induced hypoxia-inducible factor-1alpha activation and vascular endothelial growth factor-A expression in human osteoblasts. Bone 35:114–123PubMedCrossRefGoogle Scholar
  212. Wang CJ, Wang FS, Ko JY, Huang HY, Chen CJ, Sun YC, Yang YJ (2008a) Extracorporeal shockwave therapy shows regeneration in hip necrosis. Rheumatology (Oxford) 47:542–546CrossRefGoogle Scholar
  213. Wang L, Qin L, Lu HB, Cheung WH, Yang H, Wong WN, Chan KM, Leung KS (2008b) Extracorporeal shock wave therapy in treatment of delayed bone-tendon healing. Am J Sports Med 36:340–347PubMedCrossRefGoogle Scholar
  214. Warden SJ, Favaloro JM, Bennell KL, McMeeken JM, Ng KW, Zajac JD, Wark JD (2001) Low-intensity pulsed ultrasound stimulates a bone-forming response in UMR-106 cells. Biochem Biophys Res Commun 286:443–450PubMedCrossRefGoogle Scholar
  215. Watabe H, Furuhama T, Tani-Ishii N, Mikuni-Takagaki Y (2011) Mechanotransduction activates α5β1 integrin and PI3K/Akt signaling pathways in mandibular osteoblasts. Exp Cell Res 317:2642–2649PubMedCrossRefGoogle Scholar
  216. Watanuki M, Kishimoto KN, Kotajima S, Iwabuchi S, Kokubun S (2009) Effect of low-intensity pulsed ultrasound on scaffold-free ectopic bone formation in skeletal muscle. Ups J Med Sci 114:242–248PubMedCentralPubMedCrossRefGoogle Scholar
  217. Weinstein JN, Oster DM, Park JB, Park SH, Leoning S (1988) The effect of the extracorporeal shock wave lithotriptor on the bone-cement interface in dogs. Clin Orthop Relat Res 235:261–267PubMedGoogle Scholar
  218. Welgus HG, Jeffrey JJ, Eisen AZ (1981) Human skin fibroblast collagenase. Assessment of activation energy and deuterium isotope effect with collagenous substrates. J Biol Chem 256:9516–9521PubMedGoogle Scholar
  219. Whitney NP, Lamb AC, Louw TM, Subramanian A (2012) Integrin-mediated mechanotransduction pathway of low-intensity continuous ultrasound in human chondrocytes. Ultrasound Med Biol 38:1734–1743PubMedCentralPubMedCrossRefGoogle Scholar
  220. Williams R, Wright C, Cherin E, Reznik N, Lee M, Gorelikov I, Foster FS, Matsuura N, Burns PN (2013) Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer. Ultrasound Med Biol 39:475–489PubMedCrossRefGoogle Scholar
  221. Wilson CG, Martin-Saavedra FM, Padilla F, Fabiilli ML, Zhang M, Baez AM, Bonkowski CJ, Kripfgans OD, Voellmy R, Vilaboa N, Fowlkes JB, Franceschi RT (2014) Patterning expression of regenerative growth factors using high intensity focused ultrasound. Tissue Eng Part C Methods 20:769–779PubMedCentralPubMedCrossRefGoogle Scholar
  222. Winterroth F, Lee J, Kuo S, Fowlkes JB, Feinberg SE, Hollister SJ, Hollman KW (2011) Acoustic microscopy analyses to determine good vs. failed tissue engineered oral mucosa under normal or thermally stressed culture conditions. Ann Biomed Eng 39:44–52PubMedCentralPubMedCrossRefGoogle Scholar
  223. Yang RS, Lin WL, Chen YZ, Tang CH, Huang TH, Lu BY, Fu WM (2005) Regulation by ultrasound treatment on the integrin expression and differentiation of osteoblasts. Bone 36:276–283PubMedCrossRefGoogle Scholar
  224. Yip HK, Chang LT, Sun CK, Youssef AA, Sheu JJ, Wang CJ (2008) Shock wave therapy applied to rat bone marrow-derived mononuclear cells enhances formation of cells stained positive for CD31 and vascular endothelial growth factor. Circ J 72:150–156PubMedCrossRefGoogle Scholar
  225. Yoshie O (2000) Immune chemokines and their receptors: the key elements in the genesis, homeostasis and function of the immune system. Springer Semin Immunopathol 22:371–391PubMedCrossRefGoogle Scholar
  226. Yue Y, Yang X, Wei X, Chen J, Fu N, Fu Y, Ba K, Li G, Yao Y, Liang C, Zhang J, Cai X, Wang M (2013) Osteogenic differentiation of adipose-derived stem cells prompted by low-intensity pulsed ultrasound. Cell Prolif 46:320–327PubMedCrossRefGoogle Scholar
  227. Zauhar G, Duck FA, Starritt HC (2006) Comparison of the acoustic streaming in amniotic fluid and water in medical ultrasonic beams. Ultraschall Med 27:152–158PubMedCrossRefGoogle Scholar
  228. Zhou S, Schmelz A, Seufferlein T, Li Y, Zhao J, Bachem MG (2004) Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts. J Biol Chem 279:54463–54469PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Frédéric Padilla
    • 1
    Email author
  • Regina Puts
    • 2
  • Laurence Vico
    • 3
  • Alain Guignandon
    • 3
  • Kay Raum
    • 2
  1. 1.Inserm U1032, LabTauUniversité de LyonLyonFrance
  2. 2.Berlin-Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlinGermany
  3. 3.Inserm U1059 Lab Biologie intégrée du Tissu OsseuxUniversité de Saint-EtienneSt-EtienneFrance

Personalised recommendations