Ultrasound-Mediated Polymeric Micelle Drug Delivery

  • Hesheng Xia
  • Yue Zhao
  • Rui Tong
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 880)


The synthesis of multi-functional nanocarriers and the design of new stimuli-responsive means are equally important for drug delivery. Ultrasound can be used as a remote, non-invasive and controllable trigger for the stimuli-responsive release of nanocarriers. Polymeric micelles are one kind of potential drug nanocarrier. By combining ultrasound and polymeric micelles, a new modality (i.e., ultrasound-mediated polymeric micelle drug delivery) has been developed and has recently received increasing attention. A major challenge remaining in developing ultrasound-responsive polymeric micelles is the improvement of the sensitivity or responsiveness of polymeric micelles to ultrasound. This chapter reviews the recent advance in this field. In order to understand the interaction mechanism between ultrasound stimulus and polymeric micelles, ultrasound effects, such as thermal effect, cavitation effect, ultrasound sonochemistry (including ultrasonic degradation, ultrasound-initiated polymerization, ultrasonic in-situ polymerization and ultrasound site-specific degradation), as well as basic micellar knowledge are introduced. Ultrasound-mediated polymeric micelle drug delivery has been classified into two main streams based on the different interaction mechanism between ultrasound and polymeric micelles; one is based on the ultrasound-induced physical disruption of the micelle and reversible release of payload. The other is based on micellar ultrasound mechanochemical disruption and irreversible release of payload.


Ultrasound HIFU Polymer micelle Stimuli-responsive Drug release 


  1. Ariga K, Mori T, Hill JP (2012) Mechanical control of nanomaterials and nanosystems. Adv Mater 24:158–176PubMedCrossRefGoogle Scholar
  2. Ashihara K, Kurakata K, Mizunami T, Matsushita K (2006) Hearing threshold for pure tones above 20 kHz. Acoust Sci Tech 2006(27):12–19CrossRefGoogle Scholar
  3. Biggs S, Grieser F (1995) Preparation of polystyrene latex with ultrasonic irradiation. Macromolecules 28:4877–4882CrossRefGoogle Scholar
  4. Brantley JN, Wiggins KM, Bielawski CW (2011) Unclicking the click: mechanically facilitated 1,3-dipolar cycloreversions. Science 333:1606–1609PubMedCrossRefGoogle Scholar
  5. Brantley JN, Wiggins KM, Bielawski CW (2012) Polymer mechanochemistry: the design and study of mechanophores. Polym Int 62:2–12CrossRefGoogle Scholar
  6. Brantley JN, Bailey CB, Wiggins KM, Ketinge-Clay AT, Bielawski CW (2013) Mechanobiochemistry: harnessing biomacromolecules for force-responsive materials. Polym Chem 4:3916–3928CrossRefGoogle Scholar
  7. Caruso MM, Davis DA, Shen QS, Odom SA, Sottos NR, White SR, Moore JS (2009) Mechanically-induced chemical changes in polymeric materials. Chem Rev 109:5755–5798PubMedCrossRefGoogle Scholar
  8. Chen KQ, Ye S, Li HL, Xu XJ (1985) Studies on ultrasonic degradation and block/graft copolymerization of hydroxyethyl cellulose and poly(ethylene oxide). J Macromol Sci Chem 22:455–469Google Scholar
  9. Chou H, Stoffer JO (1999) Ultrasonically initiated free radical-catalyzed emulsion polymerization of methyl methacrylate. J Appl Polym Sci 72:797–825CrossRefGoogle Scholar
  10. Coll C, Mondragón L, Martínez-Máñez R, Sancenón F, Marcos MD, Soto J, Amorós P, Pérez-Payá E (2011) Enzyme-mediated controlled release systems by anchoring peptide sequences on mesoporous silica supports. Angew Chem Int Ed Engl 50:2138–2140PubMedCrossRefGoogle Scholar
  11. Cravotto G, Angew CP (2007) Forcing and controlling chemical reactions with ultrasound. Angew Chem Int Ed Engl 46:5476–5478PubMedCrossRefGoogle Scholar
  12. Cravotto G, Gaudino EC, Cintas P (2013) On the mechanochemical activation by ultrasound. Chem Soc Rev 42:7521–7534PubMedCrossRefGoogle Scholar
  13. David DA, Hamilton A, Yang J, Cremar LD, Van Goug D, Potisek SL, Ong MT, Braun PV, Matinez TJ, White SR, Moore JS, Sottos NR (2009) Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459:68–72CrossRefGoogle Scholar
  14. de Geest BG, Skirtach AG, Mamedov AA, Antipov AA, Kotov NA, de Smedt AC, Sukhorukov B (2007) Ultrasound-triggered release from multilayered capsules. Small 3:804–808PubMedCrossRefGoogle Scholar
  15. Diaz de la Rosa MA (2007) High-Frequency Ultrasound Drug Delivery And Cavitation. MSc thesis, Brigham Young University, USAGoogle Scholar
  16. Deckers R, Paradissis A, Oerlemans C, Talelli M, Storm G, Hennink WE, Nijsen JFW (2013) New insights into the HIFU-triggered release from polymer micelles. Langmuir 29:9483–9490PubMedCrossRefGoogle Scholar
  17. Dogra VS, Zhang M, Bhatt S (2009) High-intensity focused ultrasound (HIFU) therapy applications. Ultrasound Clin 4:307–327CrossRefGoogle Scholar
  18. EI-sherif DM, Lathia JD, Le NT, Wheatley MA (2004) Ultrasound degradation of novel polymer contrast agents. J Biomed Mater Res A 68A:71–78CrossRefGoogle Scholar
  19. Eissa AM, Khosravi E (2011) Synthesis of a new smart temperature responsive glycopolymerisation. Eur Polym J 47:61–69CrossRefGoogle Scholar
  20. Fellinger K, Schmid J (1954) Klinik and therapies des chromischen gelenkreumatismus. Maudrich Vienna, Austria, pp 549–555Google Scholar
  21. Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64:866–884PubMedCrossRefGoogle Scholar
  22. Fry WJ, Fry FJ (1960) Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Med Electron 7:166–181PubMedCrossRefGoogle Scholar
  23. Fujiwara H, Kimura T, Segi M, Nakataka T, Nakamura H (1992) Mechanochemical block copolymerization in heterogeneous systems of the solid poly(vinyl chloride) with styrene by ultrasonic irradiation. Polym Bull 28:189–196CrossRefGoogle Scholar
  24. Fujiwara H, Kikyu T, Nanbu H, Honda T (1994) Mechanochemical block copolymerization in heterogeneous systems of the solid poly(vinyl chloride) with styrene by ultrasonic irradiation. Polym Bull 33:317–323CrossRefGoogle Scholar
  25. Geers B, Lentacker I, Sanders NN, Demeester J, Meairs S, De Smedt SC (2011) Self-assembled liposome-laoded microbubbles: the missing link for safe and efficient ultrasound triggered drug delivery. J Control Release 152:249–256PubMedCrossRefGoogle Scholar
  26. Gohy JF, Lohmeijer BGG, Schubert US (2002) Metallo-supramolecular block copolymer micelles. Macromolecules 35:4560–4563CrossRefGoogle Scholar
  27. Gronroos A, Pirkonen P, Heikkinen J, Ihalainen J, Mursunen H, Sekki H (2001) Ultrasonic depolymerization of aqueous polyvinyl alcohol. Ultrason Sonochem 8:259–264PubMedCrossRefGoogle Scholar
  28. Haar GT, Coussios C (2007) High intensity focused ultrasound: physical principles and devices. Int J Hyperthermia 23:89–104PubMedCrossRefGoogle Scholar
  29. Hasanzadeh H, Mokhtari-Dizaji M, Bathaie SZ, Hassan ZM (2011) Effect of local dual frequency sonication on drug distribution from polymeric nanomicelles. Ultrason Sonochem 18:1165–1171PubMedCrossRefGoogle Scholar
  30. Henglein VA (1954) Die Auslösung und der Verlauf der Polymerisation des Acrylamids unter dem Einfluß von Ultraschallwellen. Makromol Chem 14:15–39CrossRefGoogle Scholar
  31. Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR (2007) Biasing reaction pathways with mechanical force. Nature 446:423–427PubMedCrossRefGoogle Scholar
  32. Howard B, Gao Z, Lee SW, Seo MH, Rapoport N (2006) Ultrasound-enhanced chemotherapy of drug-resistant breast cancer tumors by micellar-encapsulated paclitaxel. Am J Drug Deliv 4:97–104CrossRefGoogle Scholar
  33. Husseini GA, Pitt WG (2008) Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60:1137–1152PubMedCentralPubMedCrossRefGoogle Scholar
  34. Husseini GA, Myrup G, Pitt WG, Christensen DA, Rapoport NY (2000) Factors affecting acoustically triggered release of drugs from polymeric micelles. J Control Release 69:43–52PubMedCrossRefGoogle Scholar
  35. Husseini GA, Christensen DA, Rapoport NY, Pitt WG (2002a) Ultrasonic release of doxorubicin from Pluronic P105 micelles stabilized with an interpenetrating network of N, N-diethylacrylamide. J Control Release 83:303–305PubMedCrossRefGoogle Scholar
  36. Husseini GA, Rapoport NY, Christensen DA, Pruitt J, Pitt WG (2002b) Kinetics of ultrasonic release of doxorubicin from pluronic P105 micelles. Colloids Surf B 24:253–264CrossRefGoogle Scholar
  37. Husseini GA, Runyan CM, Pitt WG (2002c) Investigating the mechanism of acoustically activated uptake of drugs from Pluronic cells. BMC Cancer 2:20PubMedCentralPubMedCrossRefGoogle Scholar
  38. Husseini GA, Diaz de la Rosa MA, Richardson ES, Christensen DA, Pitt WG (2005) The role of cavitation in acoustically activated drug delivery. J Control Release 107:253–261PubMedCentralPubMedCrossRefGoogle Scholar
  39. Husseini GA, Diaz de la Rosa MA, Gabuji T, Zeng Y, Christensen DA, Pitt WG (2007) Release of doxorubicin from unstabilized and stabilized micelles under the action of ultrasound. J Nanosci Nanotechnol 7:1028–1033PubMedCentralPubMedCrossRefGoogle Scholar
  40. Husseini GA, Pitt WG, Christensen DA, Dicknson DJ (2009) Degradation kinetics of stabilized Pluronic micelles under the action of ultrasound. J Control Release 138:45PubMedCentralPubMedCrossRefGoogle Scholar
  41. Husseini GA, Velluto D, Kherbeck L, Pitt WG, Hubbell JA, Christensen DA (2013) Investigating the acoustic release of doxorubicin from targeted micelles. Colloids Surf B Biointerfaces 101:153–155PubMedCrossRefGoogle Scholar
  42. Karthikeyan S, Potisek SL, Piermattei A, Sijbesma RP (2008) Highly efficient mechanochemical scission of silver-carbene coordination polymers. J Am Chem Soc 130:14968–14969PubMedCrossRefGoogle Scholar
  43. Kawasaki H, Takeda Y, Arakawa R (2007) Mass spectrometric analysis for high molecular weight synthetic polymers using ultrasonic degradation and the mechanism of degradation. Anal Chem 79:4182–4187PubMedCrossRefGoogle Scholar
  44. Kiessling F, Fokong S, Bzyl J, Lederle W, Palmowski M, Lammer T (2014) Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv Drug Deliv Rev 72:15–27PubMedCrossRefGoogle Scholar
  45. Kim HJ, Matsuda H, Zhou HS, Honma I (2006) Ultrasound-triggered smart drug release from a poly(dimethylsiloxane)- mesoporous silica composite. Adv Mater 18:3083–3088CrossRefGoogle Scholar
  46. Knezevic NZ, Trewyn BG, Lin VSY (2011) Functionalized mesoporous silica nanoparticle-based visible light responsive controlled release delivery system. Chem Commun (camb) 47:2817–2819CrossRefGoogle Scholar
  47. Kobayashi D, Karasawa M, Takahashi T, Otake K and Shono A (2012) Effluence of internal substances from pluronic micelle using ultrasound. Jpn J Appl Phys 51:07GD10Google Scholar
  48. Kost J, Langer R (2001) Responsive polymeric delivery systems. Adv Drug Deliv Rev 46:125–148PubMedCrossRefGoogle Scholar
  49. Kost J, Leong K, Langer R (1989) Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc Natl Acad Sci U S A 86:7663–7666PubMedCentralPubMedCrossRefGoogle Scholar
  50. Kruus P (1983) Polymerization resulting from ultrasonic cavitation. Ultrasonics 21:201–204CrossRefGoogle Scholar
  51. Kruus P, Patraboy TJ (1985) Initiation of polymerization with ultrasound in methyl methacrylate. J Phys Chem 89:3379–3384CrossRefGoogle Scholar
  52. Kryger MJ, Ong MT, Odom SA, Sottos NR, White SR, Martinez TJ, Moore JS (2010) Masked cyanoacrylates unveiled by mechanical force. J Am Chem Soc 132:4558–4559PubMedCrossRefGoogle Scholar
  53. Lee MH, Lin HY, Chen HC, Thomas JL (2008) Ultrasound mediated the release of curcumin from microemulsions. Langmuir 24:1707–1713PubMedCrossRefGoogle Scholar
  54. Lensen D, Gelderblom EC, Vriezema DM, Marmottant P, Verdonschot N, Versluis M, de Jong N, van Hest JCM (2011) Biodegradable polymeric microscapsules for sequential ultrasound-triggered drug delivery. Soft Matter 7:5417–5422CrossRefGoogle Scholar
  55. Li Y, Tong R, Xia H, Zhang H, Xuan J (2010) High intensity focused ultrasound and redox dual responsive polymer micelles. Chem Commun 46:7739–7741CrossRefGoogle Scholar
  56. Liang B, Tong R, Wang Z, Guo S, Xia H (2014) High intensity focused ultrasound responsive metallo-supramolecular block copolymer micelles. Langmuir 30:9524–9532PubMedCrossRefGoogle Scholar
  57. Lin HY, Thomas JL (2003) PEG-lipids and oligo(ethylene glycol) surfactants enhance the ultrasonic permeabilizability of liposomes. Langmuir 19:1098–1105CrossRefGoogle Scholar
  58. Liu LS, Kost J, D’Emanuele A, Langer R (1992) Experimental approach to elucidate the mechanism of ultrasound-enhanced polymer erosion and release of incorporated substances. Macromolecules 25:123–128CrossRefGoogle Scholar
  59. Liu Y, Chou H, Stoffer JO (1994) Analysis of ultrasonically induced free radicals in the emulsion polymerization system by GC-MS. J Appl Polym Sci 53:247–254CrossRefGoogle Scholar
  60. Liu X, Zhou T, Du Z, Wei Z, Zhang J (2011) Recognition ability of temperature responsive molecularly imprinted polymer hydrogels. Soft Matter 7:1986–1993CrossRefGoogle Scholar
  61. Luche JL (1998) Synthetic Organic Sonochemistry, Springer Science+Business Media, LLCGoogle Scholar
  62. Makino K, Mossoba M, Reisz P (1983) Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogens atoms. J Phys Chem 87:1369–1377CrossRefGoogle Scholar
  63. Malhotra SL (1982) Ultrasonic modification of polymers. II. Degradation of polystyrene, substituted polystyrene, and poly(n-vinyl carbazole) in the presence of flexible chain polymers. J Macromol Sci Chem 18:1055–1085CrossRefGoogle Scholar
  64. Marin A, Muniruzzaman M, Rapoport N (2001a) Acoustic activation of drug delivery from polymeric micelles: effect of pulsed ultrasound. J Control Release 71:239–249PubMedCrossRefGoogle Scholar
  65. Marin A, Muniruzzaman M, Rapoport N (2001b) Mechanism of the ultrasonic activation of micellar drug delivery. J Control Release 75:69–81PubMedCrossRefGoogle Scholar
  66. Marin A, Sun H, Husseini GA, Pitt WG, Christensen DA, Rapoport NY (2002) Drug delivery in pluronic micelles: effect of high-frequency ultrasound on drug release from micelles and intracellular uptake. J Control Release 84:39–47PubMedCrossRefGoogle Scholar
  67. Mason TJ, Lorimer JP (1988) Sonochemistry: theory, application and uses of ultrasound in chemistry. Ellis Norwood, ChichesterGoogle Scholar
  68. May PA, Moore JS (2013) Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem Soc Rev 42:7497–7506PubMedCrossRefGoogle Scholar
  69. Mitragotri S (2005) Healing sound: the use of ultrasound in drug delivery and other therapeutic appilications. Nature Rev. Nat Rev Drug Discov 4:255–260PubMedCrossRefGoogle Scholar
  70. Munshi N, Rapoport N, Pitt WG (1997) Ultrasonic activated drug delivery from Pluronic P-105 micelles. Cancer Lett 118:13–19PubMedCrossRefGoogle Scholar
  71. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003PubMedCrossRefGoogle Scholar
  72. Musyanovych A, Landfester K (2014) Polymer micro- and nanocapsules as biological carriers with multifunctional properties. Macromol Biosci 14:458–477PubMedCrossRefGoogle Scholar
  73. Myhr G, Moan J (2006) Synergistic and tumour selective effects of chemotherapy and ultrasound treatment. Cancer Lett 232:206–213PubMedCrossRefGoogle Scholar
  74. Nakayama M, Akimoto J, Okano T (2014) Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting. J Drug Target 22:584–599PubMedCrossRefGoogle Scholar
  75. Nelson JL, Roeder BL, Carmen JC, Roloff F, Pitt WG (2002) Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res 62:7280–7283PubMedGoogle Scholar
  76. Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27:2569–2589PubMedCentralPubMedCrossRefGoogle Scholar
  77. Park K (2010) Focused ultrasound for targeted nanoparticle delivery to tumors. J Control Release 146:263PubMedCrossRefGoogle Scholar
  78. Paulusse JMJ, Sijbesma RP (2008) Selectivity of mechanochemical chain scission in mixed palladium(II) and platinum(II) coordination polymers. Chem Commun 37:4416–4418CrossRefGoogle Scholar
  79. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnol 2:751–760CrossRefGoogle Scholar
  80. Phenix CP, Togtema M, Pichardo S, Zehbe I, Curiel L (2014) High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. J Pharm Pharm Sci 17:136–153PubMedGoogle Scholar
  81. Pitt WG, Husseini GA, Staples BJ (2004) Ultrasonic drug delivery – a general review. Expert Opin Drug Deliv 1:37–56PubMedCentralPubMedCrossRefGoogle Scholar
  82. Pitt WG, Husseini GA, Kherbeck LN (2013) Smart Materials for Drug Delivery. RSC Publishing 6(1):169–171Google Scholar
  83. Price GJ, Smith PF (1991) The use of ultrasound for the controlled degradation of polymer solutions. Polym Int 3:159–164CrossRefGoogle Scholar
  84. Price GJ, Norris DJ, West PJ (1992) Polymerization of methyl methacrylate initiated by ultrasound. Macromolecules 25:6447–6454CrossRefGoogle Scholar
  85. Pritchard EM, Valentin T, Boison D, Kaplan DL (2011) Incorporation of proteinase into silk-based delivery devices for enhanced control of degradation and drug release. Biomaterials 32:909–918PubMedCentralPubMedCrossRefGoogle Scholar
  86. Qiu G, Wang Q, Wang C, Lau W, Guo Y (2007) Polystyrene/Fe3O4 magnetic emulsion and nanocomposite prepared by ultrasonically initiated miniemulsion polymerization. Ultrasonic Sonochem 14:55–61CrossRefGoogle Scholar
  87. Rapoport NY (1999) Stabilization and activation of pluronic micelles for the tumor-targeted drug delivery. Colloids Surf B Biointerfaces 16:93–111CrossRefGoogle Scholar
  88. Rapoport NY, Herron JN, Pitt WG (1999) Micellar delivery of doxorubicin and its paramagnetic analog, ruboxyl, to HL-60 cells: effect of micelle structure and ultrasound on the intracellular drug uptake. J Control Release 58:153–162PubMedCrossRefGoogle Scholar
  89. Reich G (1988) Ultrasound-induced degradation of PLA and PLGA during microsphere processing: influence of formulation variables. Eur J Pharm Biopharm 45:165–171CrossRefGoogle Scholar
  90. Richards WT, Loomis AL (1927) The chemical effects of high frequency sound waves I. A preliminary survey. J Am Chem Soc 49:3086–3100CrossRefGoogle Scholar
  91. Schroeder A, Kost J, Barenholz Y (2009) Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem Phys Lipids 162:1–16PubMedCrossRefGoogle Scholar
  92. Shchukin DG, Gorin DA, Moehwald H (2006) Ultrasonically induced opening of polyelectrolyte microcontainers. Langmuir 22:7400–7404PubMedCrossRefGoogle Scholar
  93. Sirsi SR, Borden MA (2014) State-of-the-art materials for ultrasound-triggered drug delivery. Adv Drug Deliv Rev 72:3–14PubMedCrossRefGoogle Scholar
  94. Skauen D, Zentner G (1984) Phonophoresis. Int J Pharm 20:235–245CrossRefGoogle Scholar
  95. Skirtach AG, De Geest BG, Mamedov A, Antipov AA, Kotov NA, Sukhorukov GBJ (2007) Ultrasound stimulated release and catalysis using polyelectrolyte multilayer capsules. J Mater Chem 17:1050–2054CrossRefGoogle Scholar
  96. Smith MJ, Eccleston ME, Slater NK (2008) The effect of high intensity focussed ultrasound (HIFU) on pH responsive PEGylated micelles. J Acoust Soc Am 123:3223CrossRefGoogle Scholar
  97. Stevenson-Abouelnasr D, Husseini GA, Pitt WG (2007) Further investigations of the mechanism of Doxorubicin release from P105 micelles using kinetic models. Colloids Surf B Biointerfaces 55:59–66PubMedCentralPubMedCrossRefGoogle Scholar
  98. Su J, Chen F, Cryns VL, Messersmith PB (2011) Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J Am Chem Soc 133:11850–11853PubMedCentralPubMedCrossRefGoogle Scholar
  99. Suslick KS (1990) Sonochemistry. Science 247:1439–1445PubMedCrossRefGoogle Scholar
  100. Tabata M, Sohma J (1980) Direct evidence of main-chain scissions induced by ultrasonic irradiation of benzene solutions of polymers. Chem Phys Lett 73:178–180CrossRefGoogle Scholar
  101. Timko BP, Dvir T, Kohane DS (2010) Remotely triggerable drug delivery systems. Adv Mater 22:4925–4943PubMedCrossRefGoogle Scholar
  102. Tong R, Xia H, Lu X (2013) Fast release behavior of block copolymer micelles under high intensity focused ultrasound/redox combined stimulis. J Mater Chem B 1:886–894CrossRefGoogle Scholar
  103. Tong R, Lu X, Xia H (2014) A facile mechanophore functionalization of an amphiphilic block copolymer towards remote ultrasound and redox dual stimulus responsiveness. Chem Commun 50:3575–3578CrossRefGoogle Scholar
  104. Ugarenko M, Chan CK, Nudelman A, Rephaeli A, Cutts SM, Phillips DR (2009) Development of pluronic micelle-encapsulated doxorubicin and formaldehyde-releasing prodrugs for localized anticancer chemotherapy. Oncol Res 17:283–299PubMedCrossRefGoogle Scholar
  105. Wang Q, Xia H, Zhang C (2001) Preparation of polymer/inorganic nanoparticles composites through ultrasonic irradiation. J Appl Polymer Sci 80:1478–1488CrossRefGoogle Scholar
  106. Wang C, Wang Q, Chen X (2005) Intercalated PS/Na+-MMT nanocomposites prepared by ultrasonically initiated in situ emulsion polymerization. Macromol Mater Eng 290:920–926CrossRefGoogle Scholar
  107. Wang J, Pelletier M, Zhang H, Xia H, Zhao Y (2009) High-frequency ultrasound-responsive block copolymer micelle. Langmuir 25:13201–13205PubMedCrossRefGoogle Scholar
  108. Whittell GR, Hager MD, Schubert US, Manners I (2011) Functional soft materials from metallopolymers and metallosupramolecular polymers. Nat Mater 10:176–188PubMedCrossRefGoogle Scholar
  109. Wiggins KM, Brantley JN, Bielawski CW (2013) Methods for activating and characterizing mechanically responsive polymers. Chem Soc Rev 42:7130–7147PubMedCrossRefGoogle Scholar
  110. Wiita AP, Ainavarapu SRK, Huang HH, Fernandez JM (2006) Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc Natl Acad Sci U S A 103:7222–7227PubMedCentralPubMedCrossRefGoogle Scholar
  111. Xia H, Wang Q (2001) Synthesis and characterization of conductive polyaniline nanoparticle through ultrasonic assisted inverse microemulsion polymerization. J Nanopart Res 3:401–411CrossRefGoogle Scholar
  112. Xia H, Wang Q (2002) Ultrasonic irradiation: a novel way to prepare conductive polyaniline/nanocrystalline TiO2 particles composites. Chem Mater 14:2158–2165CrossRefGoogle Scholar
  113. Xia H, Wang Q (2003) Preparation of conductive polyaniline/nanosilica particle composites through ultrasonic irradiation. J Appl Polymer Sci 87:1811–1817CrossRefGoogle Scholar
  114. Xia H, Zhang C, Wang Q (2001) Study on ultrasonic induced encapsulating emulsion polymerization in presence of nanoparticles. J Appl Polymer Sci 80:1130–1139CrossRefGoogle Scholar
  115. Xia H, Wang Q, Liao Y, Xu X (2002) Polymerization rate and mechanism of ultrasonically initiated emulsion polymerization of n-butyl acrylate. Ultrasonics Sonochem 9:151–158CrossRefGoogle Scholar
  116. Xia H, Wang Q, Qiu G (2003) Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in-situ emulsion polymerization. Chem Mater 15:3879–3886CrossRefGoogle Scholar
  117. Xuan J, Pelletier M, Xia H, Zhao Y (2011) Ultrasound-induced disruption of amphiphilic block copolymer micelles. Macromol Chem Phys 212:498–506CrossRefGoogle Scholar
  118. Xuan J, Boissière O, Zhao Y, Yan B, Tremblay L, Lacelle S, Xia H, Zhao Y (2012) Ultrasound-responsive block copolymer micelles based on a new amplification mechanism. Langmuir 28:16463–16468PubMedCrossRefGoogle Scholar
  119. Yan B, Boyer JC, Branda NR, Zhao Y (2011) Near-infrared light-triggered dissociated of block copolymer micelles using upconverting nanoparticles. J Am Chem Soc 133:19714–19717PubMedCrossRefGoogle Scholar
  120. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular-permeability in a human tumor xenograft – Molecular-size dependence and cutoff size. Cancer Res 55:3752–3756PubMedGoogle Scholar
  121. Zeng Y, Pitt WG (2006) A polymeric micelle system with a hydrolysable segment for drug delivery. J Biomater Sci Polym Ed 17:591–604PubMedCentralPubMedCrossRefGoogle Scholar
  122. Zhang Y, Pitt WGJ (2006) A polymeric micelle system with a hydrolysable segment for drug delivery. J Biomater Sci Polym Ed 17:591–604CrossRefGoogle Scholar
  123. Zhang J, Chen KQ, Liu QR, Xu X (1990) Ultrasonic heterogeneous copolymerization of poly (ethylene oxide) with hexyl methacrylate. Acta Polym Sin 3:271–276Google Scholar
  124. Zhang C, Wang Q, Xia H, Qiu G (2002) Ultrasonic-induced microemulsion polymerization of styrene. Eur Polymer J 38:1769–1776CrossRefGoogle Scholar
  125. Zhang H, Xia H, Wang J, Li Y (2009) High intensity focused ultrasound-responsive release behavior of PLA-b-PEG copolymer micells. J Control Release 139:31–39PubMedCrossRefGoogle Scholar
  126. Zhou K, Wang Y, Huang X, Luby-Phelps K, Sumer BD, Gao J (2011) Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew Chem Int Ed Engl 50:6109–6114PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute, Sichuan UniversityChengduChina
  2. 2.Département de ChimieUniversité de SherbrookeSherbrookeCanada

Personalised recommendations