Advertisement

Microbubbles and Ultrasound: Therapeutic Applications in Diabetic Nephropathy

  • Wei J. Cao
  • Pratiek N. Matkar
  • Hao H. Chen
  • Azadeh Mofid
  • Howard Leong-PoiEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 880)

Abstract

Diabetic nephropathy (DN) remains one of the most common causes of end-stage renal disease. Current therapeutic strategies aiming at optimization of serum glucose and blood pressure are beneficial in early stage DN, but are unable to fully prevent disease progression. With the limitations of current medical therapies and the shortage of available donor organs for kidney transplantation, the need for novel therapies to address DN complications and prevent progression towards end-stage renal failure is crucial. The development of ultrasound technology for non-invasive and targeted in-vivo gene delivery using high power ultrasound and carrier microbubbles offers great therapeutic potential for the prevention and treatment of DN. The promising results from preclinical studies of ultrasound-mediated gene delivery (UMGD) in several DN animal models suggest that UMGD offers a unique, non-invasive platform for gene- and cell-based therapies targeted against DN with strong clinical translation potential.

Keywords

Diabetic nephropathy Ultrasound Gene delivery Microbubble 

References

  1. Abecassis M, Bartlett ST, Collins AJ, Davis CL, Delmonico FL, Friedewald JJ, Hays R, Howard A, Jones E, Leichtman AB, Merion RM, Metzger RA, Pradel F, Schweitzer EJ, Velez RL, Gaston RS (2008) Kidney transplantation as primary therapy for end-stage renal disease: a National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) conference. Clin J Am Soc Nephrol 3:471–480PubMedCentralPubMedCrossRefGoogle Scholar
  2. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR (2003) Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 63:225–232PubMedCrossRefGoogle Scholar
  3. Alangaden GJ, Thyagarajan R, Gruber SA, Morawski K, Garnick J, El-Amm JM, West MS, Sillix DH, Chandrasekar PH, Haririan A (2006) Infectious complications after kidney transplantation: current epidemiology and associated risk factors. Clin Transplant 20:401–409PubMedCrossRefGoogle Scholar
  4. Alatorre-Meda M, Taboada P, Krajewska B, Willemeit M, Deml A, Klosel R, Rodriguez JR (2010) DNA-poly(diallyldimethylammonium chloride) complexation and transfection efficiency. J Phys Chem B 114:9356–9366PubMedCrossRefGoogle Scholar
  5. Andersen S, Brochner-Mortensen J, Parving HH (2003) Kidney function during and after withdrawal of long-term irbesartan treatment in patients with type 2 diabetes and microalbuminuria. Diabetes Care 26:3296–3302PubMedCrossRefGoogle Scholar
  6. Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23:447–485PubMedCrossRefGoogle Scholar
  7. Andre FM, Mir LM (2010) Nucleic acids electrotransfer in vivo: mechanisms and practical aspects. Curr Gene Ther 10:267–280PubMedCrossRefGoogle Scholar
  8. Asgeirsdottir SA, Zwiers PJ, Morselt HW, Moorlag HE, Bakker HI, Heeringa P, Kok JW, Kallenberg CG, Molema G, Kamps JA (2008) Inhibition of proinflammatory genes in anti-GBM glomerulonephritis by targeted dexamethasone-loaded AbEsel liposomes. Am J Physiol Renal Physiol 294:F554–F561PubMedCrossRefGoogle Scholar
  9. Azuma H, Tomita N, Kaneda Y, Koike H, Ogihara T, Katsuoka Y, Morishita R (2003) Transfection of NFkappaB-decoy oligodeoxynucleotides using efficient ultrasound-mediated gene transfer into donor kidneys prolonged survival of rat renal allografts. Gene Ther 10:415–425PubMedCrossRefGoogle Scholar
  10. Bangstad HJ, Try K, Dahl-Jorgensen K, Hanssen KF (1991) New semiquantitative dipstick test for microalbuminuria. Diabetes Care 14:1094–1097PubMedCrossRefGoogle Scholar
  11. Bekeredjian R, Chen S, Frenkel PA, Grayburn PA, Shohet RV (2003) Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation 108:1022–1026PubMedCrossRefGoogle Scholar
  12. Breyer MD, Bottinger E, Brosius FC 3rd, Coffman TM, Harrris RC, Heilig CW, Sharma K, AMDCC (2005) Mouse models of diabetic nephropathy. J Am Soc Nephrol 16:27–45PubMedCrossRefGoogle Scholar
  13. Briggs JD (2001) Causes of death after renal transplantation. Nephrol Dial Transplant 16:1545–1549PubMedCrossRefGoogle Scholar
  14. Brosius FC 3rd, Alpers CE, Bottinger EP, Breyer MD, Coffman TM, Gurley SB, Harris RC, Kakoki M, Kretzler M, Leiter EH, Levi M, McIndoe RA, Sharma L, Smithies O, Susztak K, Takahashi N, Takahashi T, Animal Models of Diabetic Complications Consortium (2009) Mouse models of diabetic nephropathy. J Am Soc Nephrol 20:2503–2512PubMedCentralPubMedCrossRefGoogle Scholar
  15. Carson AR, McTiernan CF, Lavery L, Hodnick A, Grata M, Leng X, Wang J, Chen X, Modzekewski RA, Villanueva FS (2011) Gene therapy of carcinoma using ultrasound-targeted microbubble destruction. Ultrasound Med Biol 37:393–402PubMedCentralPubMedCrossRefGoogle Scholar
  16. Carson AR, McTiernan CF, Lavery L, Grata M, Leng X, Wang J, Chen X, Villanueva FS (2012) Ultrasound-targeted microbubble destruction to deliver siRNA cancer therapy. Cancer Res 72:6191–6199PubMedCentralPubMedCrossRefGoogle Scholar
  17. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495PubMedCrossRefGoogle Scholar
  18. Chen S, Shohet RV, Bekeredjian R, Frenkel P, Grayburn PA (2003) Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. J Am Coll Cardiol 42:301–308PubMedCrossRefGoogle Scholar
  19. Chen S, Ding JH, Bekeredjian R, Yang BZ, Shohet RV, Johnston SA, Hohmeier HE, Newgard CB, Grayburn PA (2006) Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. Proc Natl Acad Sci U S A 103:8469–8474PubMedCentralPubMedCrossRefGoogle Scholar
  20. Chen S, Ding J, Yu C, Yang B, Wood DR, Grayburn PA (2007) Reversal of streptozotocin-induced diabetes in rats by gene therapy with betacellulin and pancreatic duodenal homeobox-1. Gene Ther 14:1102–1110PubMedCrossRefGoogle Scholar
  21. Chen S, Shimoda M, Wang MY, Ding J, Noguchi H, Matsumoto S, Grayburn PA (2010) Regeneration of pancreatic islets in vivo by ultrasound-targeted gene therapy. Gene Ther 17:1411–1420PubMedCentralPubMedCrossRefGoogle Scholar
  22. Chen HY, Huang XR, Wang W, Li JH, Heuchel RL, Chung A, Lan HY (2011) The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential. Diabetes 60:590–601PubMedCentralPubMedCrossRefGoogle Scholar
  23. Chen HY, Zhong X, Huang XR, Meng XM, You Y, Chung AC, Lan HY (2014) MicroRNA-29b inhibits diabetic nephropathy in db/db mice. Mol Ther 22:842–853PubMedCentralPubMedCrossRefGoogle Scholar
  24. Christiansen JP, French BA, Klibanov AL, Kaul S, Lindner JR (2003) Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med Biol 29:1759–1767PubMedCrossRefGoogle Scholar
  25. Collins AJ, Foley RN, Gilbertson DT, Chen SC (2009) The state of chronic kidney disease, ESRD, and morbidity and mortality in the first year of dialysis. Clin J Am Soc Nephrol 4(Suppl 1):S5–S11PubMedCrossRefGoogle Scholar
  26. Collins AJ, Foley RN, Herzog C et al (2013) US renal data system 2012 annual data report. Am J Kidney Dis 61(A7):e1–e476Google Scholar
  27. Costa PZ, Soares R (2013) Neovascularization in diabetes and its complications. Unraveling the angiogenic paradox. Life Sci 92:1037–1045PubMedCrossRefGoogle Scholar
  28. Dai C, Yang J, Bastacky S, Xia J, Li Y, Liu Y (2004) Intravenous administration of hepatocyte growth factor gene ameliorates diabetic nephropathy in mice. J Am Soc Nephrol 15:2637–2647PubMedCrossRefGoogle Scholar
  29. DCCT (1995) Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. The Diabetes Control and Complications Research Group. Kidney international 47:1703–1720Google Scholar
  30. de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J (2011) Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA 305:2532–2539PubMedCentralPubMedCrossRefGoogle Scholar
  31. Diaz-Buxo JA, White SA, Himmele R (2013) Frequent hemodialysis: a critical review. Semin Dial 26:578–589PubMedCrossRefGoogle Scholar
  32. Dobrzynski E, Montanari D, Agata J, Zhu J, Chao J, Chao L (2002) Adrenomedullin improves cardiac function and prevents renal damage in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab 283:E1291–E1298PubMedCrossRefGoogle Scholar
  33. Fernandez-Fernandez B, Ortiz A, Gomez-Guerrero C, Egido J (2014) Therapeutic approaches to diabetic nephropathy-beyond the RAS. Nat Rev Nephrol 10:325–346PubMedCrossRefGoogle Scholar
  34. Figueira MF, Monnerat-Cahli G, Medei E, Carvalho AB, Morales MM, Lamas ME, da Fonseca RN, Souza-Menezes J (2014) MicroRNAs: potential therapeutic targets in diabetic complications of the cardiovascular and renal systems. Acta Physiol (Oxf) 211:491–500CrossRefGoogle Scholar
  35. Finegood DT, McArthur MD, Kojwang D, Thomas MJ, Topp BG, Leonard T, Buckingham RE (2001) Beta-cell mass dynamics in Zucker diabetic fatty rats. Rosiglitazone prevents the rise in net cell death. Diabetes 50:1021–1029PubMedCrossRefGoogle Scholar
  36. Flaquer M, Franquesa M, Vidal A, Bolaños N, Torras J, Lloberas N, Herrero-Fresneda I, Grinyó JM, Cruzado JM (2012) Hepatocyte growth factor gene therapy enhances infiltration of macrophages and may induce kidney repair in db/db mice as a model of diabetes. Diabetologia 55:2059–2068.Google Scholar
  37. Fried LF, Emanuele N, Zhang JH, Brophy M, Conner TA, Duckworth W, Leehey DJ, McCullough PA, O’Connor T, Palevsky PM, Reilly RF, Seliger SL, Warren SR, Watnick S, Peduzzi P, Guarino P, VA NEPHRON-D Investigators (2013) Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med 369:1892–1903PubMedCrossRefGoogle Scholar
  38. Fujii H, Sun Z, Li SH, Wu J, Fazel S, Weisel RD, Rakowski H, Lindner J, Li RK (2009) Ultrasound-targeted gene delivery induces angiogenesis after a myocardial infarction in mice. JACC Cardiovasc Imaging 2:869–879PubMedCrossRefGoogle Scholar
  39. Fujii H, Li SH, Wu J, Miyagi Y, Yau TM, Rakowski H, Egashira K, Guo J, Weisel RD, Li RK (2011) Repeated and targeted transfer of angiogenic plasmids into the infarcted rat heart via ultrasound targeted microbubble destruction enhances cardiac repair. Eur Heart J 32:2075–2084PubMedCrossRefGoogle Scholar
  40. Fujii H, Matkar P, Liao C, Rudenko D, Lee PJ, Kuliszewski MA, Prud’homme GJ, Leong-Poi H (2013) Optimization of ultrasound-mediated anti-angiogenic cancer gene therapy. Mol Ther Nucleic Acids 2:e94PubMedCrossRefGoogle Scholar
  41. Gaede P, Lund-Andersen H, Parving HH, Pedersen O (2008) Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 358:580–591PubMedCrossRefGoogle Scholar
  42. Gill DR, Pringle IA, Hyde SC (2009) Progress and prospects: the design and production of plasmid vectors. Gene Ther 16:165–171PubMedCrossRefGoogle Scholar
  43. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305PubMedCrossRefGoogle Scholar
  44. Goto Y, Kakizaki M, Masaki N (1976) Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med 119:85–90PubMedCrossRefGoogle Scholar
  45. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear LJ, Kraegen EW, White MF, Shulman GI (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48:1270–1274PubMedCrossRefGoogle Scholar
  46. Grines C, Rubanyi GM, Kleiman NS, Marrott P, Watkins MW (2003) Angiogenic gene therapy with adenovirus 5 fibroblast growth factor-4 (Ad5FGF-4): a new option for the treatment of coronary artery disease. Am J Cardiol 92:24n–31nPubMedCrossRefGoogle Scholar
  47. Groop PH, Thomas MC, Moran JL, Waden J, Thorn LM, Makinene VP, Rosengard-Barlund M, Saraheimo M, Hietala K, Heikkila O, Forsblom C, FinnDiane Study Group (2009) The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 58:1651–1658PubMedCentralPubMedCrossRefGoogle Scholar
  48. Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T (2005) Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 28:164–176PubMedCrossRefGoogle Scholar
  49. Hagiwara S, McClelland A, Kantharidis P (2013) MicroRNA in diabetic nephropathy: renin angiotensin, aGE/RAGE, and oxidative stress pathway. J Diab Res 2013:173783Google Scholar
  50. Hoekstra D, Rejman J, Wasungu L, Shi F, Zuhorn I (2007) Gene delivery by cationic lipids: in and out of an endosome. Biochem Soc Trans 35:68–71PubMedCrossRefGoogle Scholar
  51. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589PubMedCrossRefGoogle Scholar
  52. Honos G, Amyot R, Choy J, Leong-Poi H, Schnell G, Yu E (2007) Contrast echocardiography in Canada: Canadian Cardiovascular Society/Canadian Society of Echocardiography position paper. Can J Cardiol 23:351–356PubMedCentralPubMedCrossRefGoogle Scholar
  53. Hou CC, Wang W, Huang XR, Fu P, Chem TH, Sheikh-Hamad D, Lan HY (2005) Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-beta signaling and fibrosis in rat remnant kidney. Am J Pathol 166:761–771PubMedCentralPubMedCrossRefGoogle Scholar
  54. Inagaki K, Piao C, Kotchey NM, Wu X, Nakai H (2008) Frequency and spectrum of genomic integration of recombinant adeno-associated virus serotype 8 vector in neonatal mouse liver. J Virol 82:9513–9524PubMedCentralPubMedCrossRefGoogle Scholar
  55. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B, Yaroshinsky A, Zsebo KM, Dittrich H, Hajjar RJ, Investigators CUPID (2011) Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124:304–313PubMedCrossRefGoogle Scholar
  56. Ka SM, Huang XR, Lan HY, Tsai PY, Yang SM, Shui HA, Chen A (2007) Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice. J Am Soc Nephrol 18:1777–1788PubMedCrossRefGoogle Scholar
  57. Ka SM, Yeh YC, Huang XR, Chao TK, Hung YJ, Yu CP, Lin TJ, Wu CC, Lan HY, Chen A (2012) Kidney-targeting Smad7 gene transfer inhibits renal TGF-beta/MAD homologue (SMAD) and nuclear factor kappaB (NF-kappaB) signalling pathways, and improves diabetic nephropathy in mice. Diabetologia 55:509–519PubMedCrossRefGoogle Scholar
  58. Kaeppel C, Beattie SG, Fronza R, van Logtenstein R, Salmon F, Schmidt S, Wolf S, Nowrouzi A, Glimm H, von Kalle C, Petry H, Gaudet D, Schmidt M (2013) A largely random AAV integration profile after LPLD gene therapy. Nat Med 19:889–891PubMedCrossRefGoogle Scholar
  59. Kagawa T, Takemura G, Kosai K, Murata I, Ohno T, Takahashi Esaki M, Maruyama R, Fujiwara T, Ohashi H, Fujiwara H (2006) Hepatocyte growth factor gene therapy slows down the progression of diabetic nephropathy in db/db mice. Nephron Physiol 102:92–102CrossRefGoogle Scholar
  60. Kato M, Natarajan R (2014) Diabetic nephropathy-emerging epigenetic mechanisms. Nat Rev Nephrol 10:517–530PubMedCrossRefGoogle Scholar
  61. KDOQI (2007) Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease. American Journal of Kidney Diseases: the official journal of the National Kidney Foundation 49:S12–154Google Scholar
  62. Kessaris N, Mukherjee D, Chandak P, Mamode N (2008) Renal transplantation in identical twins in United States and United Kingdom. Transplantation 86:1572–1577PubMedCrossRefGoogle Scholar
  63. Klibanov AL (2006) Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest Radiol 41:354–362PubMedCrossRefGoogle Scholar
  64. Knoll GA (2013) Kidney transplantation in the older adult. Am J Kidney Dis 61:790–797PubMedCrossRefGoogle Scholar
  65. Kobulnik J, Kuliszewski MA, Stewart DJ, Lindner JR, Leong-Poi H (2009) Comparison of gene delivery techniques for therapeutic angiogenesis ultrasound-mediated destruction of carrier microbubbles versus direct intramuscular injection. J Am Coll Cardiol 54:1735–1742PubMedCrossRefGoogle Scholar
  66. Kodama T, Tomita Y, Koshiyama K, Blomley MJ (2006) Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble. Ultrasound Med Biol 32:905–914PubMedCrossRefGoogle Scholar
  67. Kolset SO, Reinholt FP, Jenssen T (2012) Diabetic nephropathy and extracellular matrix. J Histochem Cytochem 60:976–986PubMedCentralPubMedCrossRefGoogle Scholar
  68. Kondo T, Takemura G, Kosai K, Ohno T, Takahashi T, Esaki M, Goto K, Maruyama R, Murata I, Minatoguchi S, Fujiwara T, Fujiwara H (2008) Application of an adenoviral vector encoding soluble transforming growth factor-beta type II receptor to the treatment of diabetic nephropathy in mice. Clin Exp Pharmacol Physiol 35:1288–1293PubMedCrossRefGoogle Scholar
  69. Kuliszewski MA, Kobulnik J, Lindner JR, Stewart D, Leong-Poi H (2011) Vascular gene transfer of SDF-1 promotes endothelial progenitor cell engraftment and enhances angiogenesis in ischemic muscle. Mol Ther 19:895–902PubMedCentralPubMedCrossRefGoogle Scholar
  70. Lan HY, Mu W, Tomita N, Huang XR, Li JH, Zhu HJ, Morishita R, Johnson RJ (2003) Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol 14:1535–1548PubMedCrossRefGoogle Scholar
  71. Lee PJ, Rudenko D, Kuliszewski MA, Liao C, Kabor MG, Connelly KA, Leong-Poi H (2013) Survivin gene therapy attenuates left ventricular systolic dysfunction in doxorubicin cardiomyopathy by reducing apoptosis and fibrosis. Cardiovasc Res 101:423–433CrossRefGoogle Scholar
  72. Leong-Poi H (2012) Contrast ultrasound and targeted microbubbles: diagnostic and therapeutic applications in progressive diabetic nephropathy. Semin Nephrol 32:494–504PubMedCrossRefGoogle Scholar
  73. Leong-Poi H, Kuliszewski MA, Lekas M, Sibbald M, Teichert-Kuliszewska K, Klibanov AL, Stewart DJ, Lindner JR (2007) Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle. Circ Res 101:295–303PubMedCrossRefGoogle Scholar
  74. Lewis G, Maxwell AP (2014) Risk factor control is key in diabetic nephropathy. Practitioner 258:13–17PubMedGoogle Scholar
  75. Li R, Chung AC, Dong Y, Yang W, Zhong X, Lan HY (2013) The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-beta/Smad3-Azin1 pathway. Kidney Int 84:1129–1144PubMedCrossRefGoogle Scholar
  76. Liang X, Li X, Chang J, Duan Y, Li Z (2013) Properties and evaluation of quaternized chitosan/lipid cation polymeric liposomes for cancer-targeted gene delivery. Langmuir 29:8683–8693PubMedCrossRefGoogle Scholar
  77. Lindner JR, Song J, Jayaweera AR, Sklenar J, Kaul S (2002) Microvascular rheology of Definity microbubbles after intra-arterial and intravenous administration. J Am Soc Echocardiogr 15:396–403PubMedCrossRefGoogle Scholar
  78. Liu M, Zhang Y, Chi Y, Zhai S, Wang B, Shi Y, Li Y (2012) Delivery of megsin siRNA plasmid reveals therapeutic potential against diabetic nephropathy by down-regulating p27(kip1) level. J Nephrol 25:418–425PubMedCrossRefGoogle Scholar
  79. Liu GX, Li YQ, Huang XR, Wei LH, Zhang Y, Feng M, Meng XM, Chen HY, Shi YJ, Lan HY (2014) Smad7 inhibits AngII-mediated hypertensive nephropathy in a mouse model of hypertension. Clin Sci (Lond) 127:195–208CrossRefGoogle Scholar
  80. Loiler SA, Conlon TJ, Song S, Tang Q, Warrington KH, Agarwal A, Kapturczak M, Li C, Ricordi C, Atkinson MA, Muzyczka N, Flotte TR (2003) Targeting recombinant adeno-associated virus vectors to enhance gene transfer to pancreatic islets and liver. Gene Ther 10:1551–1558PubMedCrossRefGoogle Scholar
  81. Lok CE, Foley R (2013) Vascular access morbidity and mortality: trends of the last decade. Clin J Am Soc Nephrol 8:1213–1219PubMedCrossRefGoogle Scholar
  82. Lu J, Zhang F, Kay MA (2013) A mini-intronic plasmid (MIP): a novel robust transgene expression vector in vivo and in vitro. Mol Ther 21:954–963PubMedCentralPubMedCrossRefGoogle Scholar
  83. MacLeod JM, Lutale J, Marshall SM (1995) Albumin excretion and vascular deaths in NIDDM. Diabetologia 38:610–616PubMedCrossRefGoogle Scholar
  84. Marcantoni C, Ortalda V, Lupo A, Maschio G (1998) Progression of renal failure in diabetic nephropathy. Nephrol Dial Transplant 13(Suppl 8):16–19PubMedCrossRefGoogle Scholar
  85. Marcen R (2009) Immunosuppressive drugs in kidney transplantation: impact on patient survival, and incidence of cardiovascular disease, malignancy and infection. Drugs 69:2227–2243PubMedCrossRefGoogle Scholar
  86. Marshall E (1999) Gene therapy death prompts review of adenovirus vector. Science 286:2244–2245PubMedCrossRefGoogle Scholar
  87. Meijering BD, Juffermans LJ, van Wamel A, Henning RH, Zuhorn IS, Emmer M, Versteilen AM, Paulus WJ, van Gilst WH, Kooiman K, de Jong N, Musters RJ, Deelman LE, Kamp O (2009) Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ Res 104:679–687PubMedCrossRefGoogle Scholar
  88. Microalbuminuria Collaborative Study Group (1995) Intensive therapy and progression to clinical albuminuria in patients with insulin dependent diabetes mellitus and microalbuminuria. United Kingdom. BMJ (Clinical research ed) 311:973–977Google Scholar
  89. Miller DL, Averkiou MA, Brayman AA, Everbach EC, Holland CK, Wible JH Jr, Wu J (2008) Bioeffects considerations for diagnostic ultrasound contrast agents. J Ultrasound Med 27:611–632PubMedGoogle Scholar
  90. Miller DL, Dou C, Wiggins RC (2009) Glomerular capillary hemorrhage induced in rats by diagnostic ultrasound with gas-body contrast agent produces intratubular obstruction. Ultrasound Med Biol 35:869–877PubMedCentralPubMedCrossRefGoogle Scholar
  91. Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K, Makin IR (2012) Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med 31:623–634PubMedCentralPubMedGoogle Scholar
  92. Miller DL, Suresh MV, Dou C, Yu B, Raghavendran K (2014) Characterization of ultrasound-induced pulmonary capillary hemorrhage in rats. Microvasc Res 93:42–45PubMedCentralPubMedCrossRefGoogle Scholar
  93. Molina CA, Ribo M, Rubiera M, Montaner J, Santamarina E, Delgado-Mederos R, Arenillas JF, Huertas R, Purroy F, Delgado P, Alvarez-Sabin J (2006) Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke 37:425–429PubMedCrossRefGoogle Scholar
  94. Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving HH, Steffes MW, American Diabetes Association (2004) Nephropathy in diabetes. Diabetes Care 27(Suppl 1):S79–S83PubMedGoogle Scholar
  95. Mulvagh SL, Rakowski H, Vannan MA et al (2008) American Society of Echocardiography consensus statement on the clinical applications of ultrasonic contrast agents in echocardiography. J Am Soc Echocardiogr 21:1179–1201PubMedCrossRefGoogle Scholar
  96. Najafian B, Alpers CE, Fogo AB (2011) Pathology of human diabetic nephropathy. Contrib Nephrol 170:36–47PubMedCrossRefGoogle Scholar
  97. Ng YY, Hou CC, Wang W, Huang XR, Lan HY (2005) Blockade of NFkappaB activation and renal inflammation by ultrasound-mediated gene transfer of Smad7 in rat remnant kidney. Kidney Int Suppl(94):S83–91Google Scholar
  98. Nomikou N, Tiwari P, Trehan T, Gulati K, McHale AP (2012) Studies on neutral, cationic and biotinylated cationic microbubbles in enhancing ultrasound-mediated gene delivery in vitro and in vivo. Acta Biomater 8:1273–1280PubMedCrossRefGoogle Scholar
  99. Ortiz-Munoz G, Lopez-Parra V, Lopez-Franco O, Fernandez-Vizarra P, Mallavia B, Flores C, Sanz A, Blanco J, Mezzano S, Ortiz A, Egido J, Gomez-Guerrero C (2010) Suppressors of cytokine signaling abrogate diabetic nephropathy. J Am Soc Nephrol 21:763–772PubMedCentralPubMedCrossRefGoogle Scholar
  100. Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P (2001) The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 345:870–878PubMedCrossRefGoogle Scholar
  101. Ponchiardi C, Mauer M, Najafian B (2013) Temporal profile of diabetic nephropathy pathologic changes. Cur Diab Rep 13:592–599CrossRefGoogle Scholar
  102. Qi Z, Fujita H, Jin J, Davis LS, Wang Y, Fogo AB, Breyer MD (2005) Characterization of susceptibility of inbred mouse strains to diabetic nephropathy. Diabetes 54:2628–2637PubMedCrossRefGoogle Scholar
  103. Qiao X, Li RS, Li H, Zhu GZ, Huang XG, Shao S, Bai B (2013) Intermedin protects against renal ischemia-reperfusion injury by inhibition of oxidative stress. Am J Physiol Renal Physiol 304:F112–F119PubMedCrossRefGoogle Scholar
  104. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, Wilson JM, Batshaw ML (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80:148–158PubMedCrossRefGoogle Scholar
  105. Reidy K, Kang HM, Hostetter T, Susztak K (2014) Molecular mechanisms of diabetic kidney disease. J Clin Invest 124:2333–2340PubMedCentralPubMedCrossRefGoogle Scholar
  106. Rosolowsky ET, Skupien J, Smiles AM, Niewczas M, Roshan B, Stanton R, Eckfeldt JH, Warram JH, Krolewski AS (2011) Risk for ESRD in type 1 diabetes remains high despite renoprotection. J Am Soc Nephrol 22:545–553PubMedCentralPubMedCrossRefGoogle Scholar
  107. Sanchez AP, Sharma K (2009) Transcription factors in the pathogenesis of diabetic nephropathy. Expert Rev Mol Med 11:e13PubMedCrossRefGoogle Scholar
  108. Selvin E, Juraschek SP, Coresh J (2012) Kidney disease in people with diabetes: the expanding epidemic. Am J Kidney Dis 59:340–342PubMedCentralPubMedCrossRefGoogle Scholar
  109. Shi Y, Du C, Zhang Y, Ren Y, Hao J, Zhao S, Yao F, Duan H (2010) Suppressor of cytokine signaling-1 ameliorates expression of MCP-1 in diabetic nephropathy. Am J Nephrol 31:380–388PubMedCrossRefGoogle Scholar
  110. Shichiri M, Kishikawa H, Ohkubo Y, Wake N (2000) Long-term results of the Kumamoto Study on optimal diabetes control in type 2 diabetic patients. Diabetes Care 23(Suppl 2):B21–B29PubMedGoogle Scholar
  111. Smith AH, Fujii H, Kuliszewski MA, Leong-Poi H (2011) Contrast ultrasound and targeted microbubbles: diagnostic and therapeutic applications for angiogenesis. J Cardiovasc Trans Res 4:404–415CrossRefGoogle Scholar
  112. Smith AH, Kuliszewski MA, Liao C, Rudenko D, Stewart DJ, Leong-Poi H (2012) Sustained improvement in perfusion and flow reserve after temporally separated delivery of vascular endothelial growth factor and angiopoietin-1 plasmid deoxyribonucleic acid. J Am Coll Cardiol 59:1320–1328PubMedCrossRefGoogle Scholar
  113. Song J, Chappell JC, Qi M, VanGieson EJ, Kaul S, Price RJ (2002) Influence of injection site, microvascular pressure and ultrasound variables on microbubble-mediated delivery of microspheres to muscle. J Am Coll Cardiol 39:726–731PubMedCrossRefGoogle Scholar
  114. Stokes JB (2011) Consequences of frequent hemodialysis: comparison to conventional hemodialysis and transplantation. Trans Am Clin Climatol Assoc 122:124–136PubMedCentralPubMedGoogle Scholar
  115. Stuart S, Booth TC, Cash CJ, Hameeduddin A, Googde JA, Harvey C, Malhotra A (2009) Complications of continuous ambulatory peritoneal dialysis. Radiographics 29:441–460PubMedCrossRefGoogle Scholar
  116. Sun L, Huang CW, Wu J, Chen KJ, Li SH, Weisel RD, Rakowski H, Sung HW, Rk L (2013) The use of cationic microbubbles to improve ultrasound-targeted gene delivery to the ischemic myocardium. Biomaterials 34:2107–2116PubMedCrossRefGoogle Scholar
  117. Sun RR, Noble ML, Sun SS, Song S, Miao CH (2014) Development of therapeutic microbubbles for enhancing ultrasound-mediated gene delivery. J Control Release 182:111–120PubMedCentralPubMedCrossRefGoogle Scholar
  118. Tang SC, Lai KN (2012) The pathogenic role of the renal proximal tubular cell in diabetic nephropathy. Nephrol Dial Transplant 27:3049–3056PubMedCrossRefGoogle Scholar
  119. Tang WX, Wu WH, Zeng XX, Bo H, Huang SM (2012) Early protective effect of mitofusion 2 overexpression in STZ-induced diabetic rat kidney. Endocrine 41:236–247PubMedCrossRefGoogle Scholar
  120. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358PubMedCrossRefGoogle Scholar
  121. Thurman JM, Schrier RW (2003) Comparative effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on blood pressure and the kidney. Am J Med 114:588–598PubMedCrossRefGoogle Scholar
  122. Traynor C, Jenkinson A, Williams Y et al (2012) Twenty-year survivors of kidney transplantation. Am J Transplant 12:3289–3295PubMedCrossRefGoogle Scholar
  123. USRDS (2009) Annual Data Report. US Renal Data Systems. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. Bethesda MD.Google Scholar
  124. Viberti G, Wheeldon NM (2002) Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus: a blood pressure-independent effect. Circulation 106:672–678PubMedCrossRefGoogle Scholar
  125. Wang X, Liu J, Zhen J, Zhang C, Wan Q, Liu G, Wei X, Zhang Y, Wang Z, Han H, Xu H, Bao C, Song Z, Zhang X, Li N, Yi F (2014) Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy. Kidney Int 86:712–725PubMedCrossRefGoogle Scholar
  126. Wei M, Ong L, Smith MT, Ross FB, Schmid K, Hoey AJ, Burstow D, Brown L (2003) The streptozotocin-diabetic rat as a model of the chronic complications of human diabetes. Heart Lung Circ 12:44–50PubMedCrossRefGoogle Scholar
  127. Williams AR, Wiggins RC, Wharram BL, Goyal M, Dou C, Johnson KJ, Miller DL (2007) Nephron injury induced by diagnostic ultrasound imaging at high mechanical index with gas body contrast agent. Ultrasound Med Biol 33:1336–1344PubMedCentralPubMedCrossRefGoogle Scholar
  128. Work LM, Nicklin SA, Brain NJ, Dishart KL, Von Seggern DJ, Hallek M, Buning H, Baker AH (2009) Development of efficient viral vectors selective for vascular smooth muscle cells. Mol Ther 9:198–208CrossRefGoogle Scholar
  129. Xiao L, Zhu X, Yang S, Liu F, Zhou Z, Zhan M, Xie P, Zhang D, Li J, Song P, Kanwar YS, Sun L (2014) Rap1 ameliorates renal tubular injury in diabetic nephropathy. Diabetes 63:1366–1380PubMedCentralPubMedCrossRefGoogle Scholar
  130. Xie A, Belcik T, Qi Y, Morgan TK, Champaneri SA, Taylor S, Davidson BP, Zhao Y, Klibanov AL, Kuliszewsli MA, Leong-Poi H, Ammi A, Lindner JR (2012) Ultrasound-mediated vascular gene transfection by cavitation of endothelial-targeted cationic microbubbles. JACC Cardiovasc Imaging 5:1253–1262PubMedCentralPubMedCrossRefGoogle Scholar
  131. Yang SM, Ka SM, Wu HL, Yeh YC, Kuo CH, Hua KF, Shi GY, Hung YJ, Hsiao FC, Yang SS, Shieh YS, Lin SH, Wi CW, Lee JS, Yang CY, Chen A (2014) Thrombomodulin domain 1 ameliorates diabetic nephropathy in mice via anti-NF-kappaB/NLRP3 inflammasome-mediated inflammation, enhancement of NRF2 antioxidant activity and inhibition of apoptosis. Diabetologia 57:424–434PubMedCrossRefGoogle Scholar
  132. Yen TT, Gill AM, Frigeri LG, Barsh GS, Wolff GL (1994) Obesity, diabetes, and neoplasia in yellow A(vy)/- mice: ectopic expression of the agouti gene. FASEB J 8:479–488PubMedGoogle Scholar
  133. Yoshioka M, Kayo T, Ikeda T, Koizumi A (1997) A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46:887–894PubMedCrossRefGoogle Scholar
  134. Yuan G, Deng J, Wang T, Zhao C, Xu X, Wang P, Voltz JW, Edin ML, Xiao X, Chao L, Chao J, Zhang XA, Zedlin DC, Wang DW (2007) Tissue kallikrein reverses insulin resistance and attenuates nephropathy in diabetic rats by activation of phosphatidylinositol 3-kinase/protein kinase B and adenosine 5′-monophosphate-activated protein kinase signaling pathways. Endocrinology 148:2016–2026PubMedCentralPubMedCrossRefGoogle Scholar
  135. Yuan F, Liu YH, Liu FY, Peng YM, Tian JW (2014) Intraperitoneal administration of the globular adiponectin gene ameliorates diabetic nephropathy in Wistar rats. Mol Med Rep 9:2293–2300PubMedGoogle Scholar
  136. Zelmanovitz T, Gross JL, Oliveira J, de Azevedo MJ (1998) Proteinuria is still useful for the screening and diagnosis of overt diabetic nephropathy. Diabetes Care 21:1076–1079PubMedCrossRefGoogle Scholar
  137. Zhang Y, Wada J, Hashimoto I, Eguchi J, Yasuhara A, Kanwar YS, Shikata K, Makino H (2006) Therapeutic approach for diabetic nephropathy using gene delivery of translocase of inner mitochondrial membrane 44 by reducing mitochondrial superoxide production. J Am Soc Nephrol 17:1090–1101PubMedCrossRefGoogle Scholar
  138. Zhang Y, Ye C, Wang G, Gao Y, Tan K, Zhuo Z, Liu Z, Xia H, Yang D, Li P (2013) Kidney-targeted transplantation of mesenchymal stem cells by ultrasound-targeted microbubble destruction promotes kidney repair in diabetic nephropathy rats. BioMed Res Int 2013:526367PubMedCentralPubMedGoogle Scholar
  139. Zhang Y, Ye C, Xu Y, Dong X, Li J, Liu R, Gao Y (2014) Ultrasound-mediated microbubble destruction increases renal interstitial capillary permeability in early diabetic nephropathy rats. Ultrasound Med Biol 40:1273–1281PubMedCrossRefGoogle Scholar
  140. Zheng S, Noonan WT, Metreveli NS, Coventry S, Kralik PM, Carlson EC, Epstein PN (2004) Development of late-stage diabetic nephropathy in OVE26 diabetic mice. Diabetes 53:3248–3257PubMedCrossRefGoogle Scholar
  141. Zhong X, Chung AC, Chen HY, Dong Y, Meng XM, Li R, Yang W, Hou FF, Lan HY (2013) miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56:663–674PubMedCrossRefGoogle Scholar
  142. Zhou Y, Lv C, Wu C, Chen F, Shao Y, Wang Q (2014) Suppressor of cytokine signaling (SOCS) 2 attenuates renal lesions in rats with diabetic nephropathy. Acta Histochem 116:981–988PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Wei J. Cao
    • 1
  • Pratiek N. Matkar
    • 1
  • Hao H. Chen
    • 1
  • Azadeh Mofid
    • 1
  • Howard Leong-Poi
    • 1
    Email author
  1. 1.Division of Cardiology, Department of MedicineKeenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of TorontoTorontoCanada

Personalised recommendations