Skip to main content

Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery

  • Chapter
Therapeutic Ultrasound

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 880))

Abstract

The interaction of nanoparticles with directed energy is a novel application in targeted drug delivery. This chapter focuses on perfluorocarbon nanoemulsions, whose action in drug delivery depends on the ultrasound-triggered phase shift from liquid to gaseous state. These nanoemulsions have great potential for unloading encapsulated drugs at a desired time and location in the body in response to directed ultrasound. In addition, they actively alter their nano-environment for enhancing drug transport through various biological barriers to sites of action, which significantly enhances therapeutic outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrens ET, Flores R, Xu H, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23:983–987

    Article  CAS  PubMed  Google Scholar 

  • Alakhov V, Moskaleva E, Batrakova EV, Kabanov AV (1996) Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer. Bioconjug Chem 7:209–216

    Article  CAS  PubMed  Google Scholar 

  • Alakhova DY, Rapoport NY, Batrakova EV, Timoshin AA, Li S, Nicholls D, Alakhov VY, Kabanov AV (2010) Differential metabolic responses to pluronic in MDR and non-MDR cells: a novel pathway for chemosensitization of drug resistant cancers. J Control Release 142:89–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alexandridis P, Holzwarth JF, Hatton TA (1994) Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27:2414–2425

    Article  CAS  Google Scholar 

  • Apfel RE (1998) Activatable infusable dispersions containing drops of a superheated liquid for methods of therapy and diagnosis, US Patent 5840276, 1998

    Google Scholar 

  • Barber EJ, Cady GH (1956) Vapor pressures of perfluoropentanes. J Phys Chem 60:504–505

    Article  CAS  Google Scholar 

  • Batrakova EV, Han HY, Miller DW, Kabanov AV (1998) Effects of pluronic P85 unimers and micelles on drug permeability in polarized BBMEC and Caco-2 cells. Pharm Res 15:1525–1532

    Article  CAS  PubMed  Google Scholar 

  • Batrakova E, Lee S, Li S, Venne A, Alakhov V, Kabanov A (1999) Fundamental relationships between the composition of pluronic block copolymers and their hypersensitization effect in MDR cancer cells. Pharm Res 16:1373–1379

    Article  CAS  PubMed  Google Scholar 

  • Batrakova EV, Li S, Elmquist WF, Miller DW, Alakhov VY, Kabanov AV (2001) Mechanism of sensitization of MDR cancer cells by pluronic block copolymers: selective energy depletion. Br J Cancer 85:1987–1997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Batrakova EV, Li S, Alakhov VY, Elmquist WF, Miller DW, Kabanov AV (2003) Sensitization of cells overexpressing multidrug-resistant proteins by pluronic P85. Pharm Res 20:1581–1590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Becher H, Burns PN (2000) Handbook for contrast echocardiography. Springer, Frankfurt/New York

    Google Scholar 

  • Becher H, Lofiego C, Mitchell A, Timperley J (2005) Current indications for contrast echocardiography imaging. Eur J Echocardiogr 6(Suppl 2):S1–S5

    Article  PubMed  Google Scholar 

  • Borden MA, Kruse DE, Caskey CF, Zhao S, Dayton PA, Ferrara KW (2005) Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction. IEEE Trans Ultrason Ferroelectr Freq Control 52:1992–2002

    Article  PubMed Central  PubMed  Google Scholar 

  • Borden MA, Zhang H, Gillies RJ, Dayton PA, Ferrara KW (2008) A stimulus-responsive contrast agent for ultrasound molecular imaging. Biomaterials 29:597–606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burke CW, Klibanov AL, Sheehan JP, Price RJ (2011) Inhibition of glioma growth by microbubble activation in a subcutaneous model using low duty cycle ultrasound without significant heating. J Neurosurg 114(6):1654–1661

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell RB (2006) Tumor physiology and delivery of nanopharmaceuticals. Anticancer Agents Med Chem 6:503–512

    Article  CAS  PubMed  Google Scholar 

  • Caruthers SD, Cyrus T, Winter PM, Wickline SA, Lanza GM (2009) Anti-angiogenic perfluorocarbon nanoparticles for diagnosis and treatment of atherosclerosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:311–323

    Article  CAS  PubMed  Google Scholar 

  • Caskey CF, Stieger SM, Qin S, Dayton PA, Ferrara KW (2007) Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall. J Acoust Soc Am 122:1191–1200

    Article  CAS  PubMed  Google Scholar 

  • Caskey CF, Qin S, Dayton PA, Ferrara KW (2009a) Microbubble tunneling in gel phantoms. J Acoust Soc Am 125:EL183–EL189

    Article  PubMed Central  PubMed  Google Scholar 

  • Caskey CF, Qin S, Ferrara KW (2009b) Ultrasound mediated drug delivery: the effect of microbubbles on a gel boundary. Conf Proc IEEE Eng Med Biol Soc 2009:134–136

    PubMed  Google Scholar 

  • Chen H, Brayman AA, Bailey MR, Matula TJ (2010) Blood vessel rupture by cavitation. Urol Res 38:321–326

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen H, Kreider W, Brayman AA, Bailey MR, Matula TJ (2011) Blood vessel deformations on microsecond time scales by ultrasonic cavitation. Phys Rev Lett 106:034301

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen X, Wang J, Versluis M, de Jong N, Villanueva FS (2013) Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects. Rev Sci Instrum 84:063701

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cohn CS, Cushing MM (2009) Oxygen therapeutics: perfluorocarbons and blood substitute safety. Crit Care Clin 25:399–414, Table of Contents

    Article  CAS  PubMed  Google Scholar 

  • Dalecki D (2004) Mechanical bioeffects of ultrasound. Annu Rev Biomed Eng 6:229–248

    Article  CAS  PubMed  Google Scholar 

  • Dayton P, Klibanov A, Brandenburger G, Ferrara K (1999) Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles. Ultrasound Med Biol 25:1195–1201

    Article  CAS  PubMed  Google Scholar 

  • Dayton PA, Zhao S, Bloch SH, Schumann P, Penrose K, Matsunaga TO, Zutshi R, Doinikov A, Ferrara KW (2006) Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy. Mol Imaging 5:160–174

    PubMed Central  PubMed  Google Scholar 

  • Deckers R, Moonen CT (2010) Ultrasound triggered, image guided, local drug delivery. J Control Release 148(1):25–33

    Article  CAS  PubMed  Google Scholar 

  • Dewhirst MW, Vujaskovic Z, Jones E, Thrall D (2005) Re-setting the biologic rationale for thermal therapy. Int J Hyperthermia 21:779–790

    Article  PubMed  Google Scholar 

  • Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98:335–344

    Article  CAS  PubMed  Google Scholar 

  • Dromi S, Frenkel V, Luk A, Traughber B, Angstadt M, Bur M, Poff J, Xie J, Libutti SK, Li KC, Wood BJ (2007) Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res 13:2722–2727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fabiilli ML, Haworth KJ, Fakhri NH, Kripfgans OD, Carson PL, Fowlkes JB (2009) The role of inertial cavitation in acoustic droplet vaporization. IEEE Trans Ultrason Ferroelectr Freq Control 56:1006–1017

    Article  PubMed Central  PubMed  Google Scholar 

  • Fabiilli ML, Haworth KJ, Sebastian IE, Kripfgans OD, Carson PL, Fowlkes JB (2010a) Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion. Ultrasound Med Biol 36:1364–1375

    Article  PubMed Central  PubMed  Google Scholar 

  • Fabiilli ML, Lee JA, Kripfgans OD, Carson PL, Fowlkes JB (2010b) Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions. Pharm Res 27:2753–2765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Faez T, Emmer M, Kooiman K, Versluis M, van der Steen A, de Jong N (2013) 20 years of ultrasound contrast agent modeling. IEEE Trans Ultrason Ferroelectr Freq Control 60:7–20

    Article  PubMed  Google Scholar 

  • Ferrara KW (2008) Driving delivery vehicles with ultrasound. Adv Drug Deliv Rev 60:1097–1102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447

    Article  CAS  PubMed  Google Scholar 

  • Frenkel V, Kimmel E, Iger Y (2000a) Ultrasound-facilitated transport of silver chloride (AgCl) particles in fish skin. J Control Release 68:251–261

    Article  CAS  PubMed  Google Scholar 

  • Frenkel V, Kimmel E, Iger Y (2000b) Ultrasound-induced intercellular space widening in fish epidermis. Ultrasound Med Biol 26:473–480

    Article  CAS  PubMed  Google Scholar 

  • Frenkel V, Etherington A, Greene M, Quijano J, Xie J, Hunter F, Dromi S, Li KC (2006) Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. Acad Radiol 13:469–479

    Article  PubMed  Google Scholar 

  • Frulio N, Trillaud H, Deckers R, Lepreux S, Moonen C, Quesson B (2010) Influence of ultrasound induced cavitation on magnetic resonance imaging contrast in the rat liver in the presence of macromolecular contrast agent. Invest Radiol 45:282–287

    Article  PubMed  Google Scholar 

  • Gaber MH, Wu NZ, Hong K, Huang SK, Dewhirst MW, Papahadjopoulos D (1996) Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int J Radiat Oncol Biol Phys 36:1177–1187

    Article  CAS  PubMed  Google Scholar 

  • Gaitan DF, Tessien RA, Hiller RA, Gutierrez J, Scott C, Tardif H, Callahan B, Matula TJ, Crum LA, Holt RG, Church CC, Raymond JL (2010) Transient cavitation in high-quality-factor resonators at high static pressures. J Acoust Soc Am 127:3456–3465

    Article  PubMed  Google Scholar 

  • Gao Z, Fain HD, Rapoport N (2004) Ultrasound-enhanced tumor targeting of polymeric micellar drug carriers. Mol Pharm 1:317–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao Z, Kennedy AM, Christensen DA, Rapoport NY (2008) Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics 48:260–270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giesecke T, Hynynen K (2003) Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro. Ultrasound Med Biol 29:1359–1365

    Article  PubMed  Google Scholar 

  • Hancock H, Dreher MR, Crawford N, Pollock CB, Shih J, Wood BJ, Hunter K, Frenkel V (2009a) Evaluation of pulsed high intensity focused ultrasound exposures on metastasis in a murine model. Clin Exp Metastasis 26:729–738

    Article  PubMed Central  PubMed  Google Scholar 

  • Hancock HA, Smith LH, Cuesta J, Durrani AK, Angstadt M, Palmeri ML, Kimmel E, Frenkel V (2009b) Investigations into pulsed high-intensity focused ultrasound-enhanced delivery: preliminary evidence for a novel mechanism. Ultrasound Med Biol 35:1722–1736

    Article  PubMed Central  PubMed  Google Scholar 

  • Hauck ML, LaRue SM, Petros WP, Poulson JM, Yu D, Spasojevic I, Pruitt AF, Klein A, Case B, Thrall DE, Needham D, Dewhirst MW (2006) Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors. Clin Cancer Res 12:4004–4010

    Article  CAS  PubMed  Google Scholar 

  • Hayat H, Friedberg I (1986) Heat-induced alterations in cell membrane permeability and cell inactivation of transformed mouse fibroblasts. Int J Hyperthermia 2:369–378

    Article  CAS  PubMed  Google Scholar 

  • Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60:1153–1166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hitchcock KE, Holland CK (2010) Ultrasound-assisted thrombolysis for stroke therapy: better thrombus break-up with bubbles. Stroke 41:S50–S53, a journal of cerebral circulation

    Article  PubMed Central  PubMed  Google Scholar 

  • Hitchcock KE, Ivancevich NM, Haworth KJ, Caudell Stamper DN, Vela DC, Sutton JT, Pyne-Geithman GJ, Holland CK (2011) Ultrasound-enhanced rt-PA thrombolysis in an ex vivo porcine carotid artery model. Ultrasound Med Biol 37:1240–1251

    Article  PubMed Central  PubMed  Google Scholar 

  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holland CK, McPherson DD (2009) Echogenic lipsomes for targeted drug delivery. Proc IEEE Int Symp Biomed Imaging 2009:755–758

    PubMed Central  PubMed  Google Scholar 

  • Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11:812–818

    Article  CAS  PubMed  Google Scholar 

  • Kaneda MM, Caruthers S, Lanza GM, Wickline SA (2009) Perfluorocarbon nanoemulsions for quantitative molecular imaging and targeted therapeutics. Ann Biomed Eng 37:1922–1933

    Article  PubMed Central  PubMed  Google Scholar 

  • Kawabata K, Sugita N, Yoshikawa H, Azama T, Umemura S (2005) Nanoparticles with multiple perfluorocarbons for controllable ultrasound-induced phase shift. Jpn J Appl Phys 44:4548–4552

    Article  CAS  Google Scholar 

  • Kawabata K, Yoshizawa A, Asami R (2006) Site-specific contrast imaging with locally induced microbubble from liquid precursors. Proc IEEE Int Ultrasonic Symp 517–520

    Google Scholar 

  • Kheirolomoom A, Dayton PA, Lum AF, Little E, Paoli EE, Zheng H, Ferrara KW (2007) Acoustically-active microbubbles conjugated to liposomes: characterization of a proposed drug delivery vehicle. J Control Release 118:275–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kheirolomoom A, Mahakian LM, Lai CY, Lindfors HA, Seo JW, Paoli EE, Watson KD, Haynam EM, Ingham ES, Xing L, Cheng RH, Borowsky AD, Cardiff RD, Ferrara KW (2010) Copper-doxorubicin as a nanoparticle cargo retains efficacy with minimal toxicity. Mol Pharm 7:1948–1958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kinoshita M, McDannold N, Jolesz FA, Hynynen K (2006) Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Proc Natl Acad Sci U S A 103:11719–11723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klibanov AL (2007) Ultrasound molecular imaging with targeted microbubble contrast agents. J Nucl Cardiol 14:876–884

    Article  PubMed  Google Scholar 

  • Klibanov AL, Shevchenko TI, Raju BI, Seip R, Chin CT (2010) Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: A tool for targeted drug delivery. J Control Release 148(1):13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kokhuis TJ, Garbin V, Kooiman K, Naaijkens BA, Juffermans LJ, Kamp O, van der Steen AF, Versluis M, de Jong N (2013) Secondary bjerknes forces deform targeted microbubbles. Ultrasound Med Biol 39:490–506

    Article  PubMed  Google Scholar 

  • Kong G, Dewhirst MW (1999) Hyperthermia and liposomes. Int J Hyperthermia 15:345–370

    Article  CAS  PubMed  Google Scholar 

  • Kong G, Anyarambhatla G, Petros WP, Braun RD, Colvin OM, Needham D, Dewhirst MW (2000a) Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res 60:6950–6957

    CAS  PubMed  Google Scholar 

  • Kong G, Braun RD, Dewhirst MW (2000b) Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res 60:4440–4445

    CAS  PubMed  Google Scholar 

  • Kong G, Braun RD, Dewhirst MW (2001) Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res 61:3027–3032

    CAS  PubMed  Google Scholar 

  • Kooiman K, Vos HJ, Versluis M, de Jong N (2014) Acoustic behavior of microbubbles and implications for drug delivery. Adv Drug Deliv Rev 72C:28–48

    Article  CAS  Google Scholar 

  • Kripfgans OD, Fowlkes JB, Miller DL, Eldevik OP, Carson PL (2000) Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol 26:1177–1189

    Article  CAS  PubMed  Google Scholar 

  • Kripfgans OD, Fowlkes JB, Woydt M, Eldevik OP, Carson PL (2002) In vivo droplet vaporization for occlusion therapy and phase aberration correction. IEEE Trans Ultrason Ferroelectr Freq Control 49:726–738

    Article  PubMed  Google Scholar 

  • Kripfgans OD, Fabiilli ML, Carson PL, Fowlkes JB (2004) On the acoustic vaporization of micrometer-sized droplets. J Acoust Soc Am 116:272–281

    Article  CAS  PubMed  Google Scholar 

  • Kripfgans OD, Orifici CM, Carson PL, Ives KA, Eldevik OP, Fowlkes JB (2005) Acoustic droplet vaporization for temporal and spatial control of tissue occlusion: a kidney study. IEEE Trans Ultrason Ferroelectr Freq Control 52:1101–1110

    Article  PubMed  Google Scholar 

  • Krupka T, Dremann D, Exner A (2009) Time and dose dependence of pluronic bioactivity in hyperthermia-induced tumor cell death. Exp Biol Med (Maywood) 234:95–104

    Article  CAS  Google Scholar 

  • Laing ST, Moody M, Smulevitz B, Kim H, Kee P, Huang S, Holland CK, McPherson DD (2011) Ultrasound-enhanced thrombolytic effect of tissue plasminogen activator-loaded echogenic liposomes in an in vivo rabbit aorta thrombus model–brief report. Arterioscler Thromb Vasc Biol 31:1357–1359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lo AH, Kripfgans OD, Carson PL, Fowlkes JB (2006) Spatial control of gas bubbles and their effects on acoustic fields. Ultrasound Med Biol 32:95–106

    Article  PubMed  Google Scholar 

  • Lo AH, Kripfgans OD, Carson PL, Rothman ED, Fowlkes JB (2007) Acoustic droplet vaporization threshold: effects of pulse duration and contrast agent. IEEE Trans Ultrason Ferroelectr Freq Control 54:933–946

    Article  PubMed  Google Scholar 

  • Lubner MG, Brace CL, Hinshaw JL, Lee FT Jr (2010) Microwave tumor ablation: mechanism of action, clinical results, and devices. J Vasc Interv Radiol 21:S192–S203

    Article  PubMed Central  PubMed  Google Scholar 

  • Lum AF, Borden MA, Dayton PA, Kruse DE, Simon SI, Ferrara KW (2006) Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Control Release 111:128–134, Epub 2005 Dec 2027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Manthe RL, Foy SP, Krishnamurthy N, Sharma B, Labhasetwar V (2010) Tumor ablation and nanotechnology. Mol Pharm 7:1880–1898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maresca D, Renaud G, van Soest G, Li X, Zhou Q, Shung KK, de Jong N, van der Steen AF (2013) Contrast-enhanced intravascular ultrasound pulse sequences for bandwidth-limited transducers. Ultrasound Med Biol 39:706–713

    Article  PubMed Central  PubMed  Google Scholar 

  • Matsunaga TO, Sheeran PS, Luois S, Streeter JE, Mullin LB, Banerjee B, Dayton PA (2012) Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging. Theranostics 2:1185–1198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matula T, Guan J (2011) Using optical scattering to measure properties of ultrasound contrast agent shells. J Acoust Soc Am 129:1675

    Article  Google Scholar 

  • McDannold NJ, Vykhodtseva NI, Hynynen K (2006) Microbubble contrast agent with focused ultrasound to create brain lesions at low power levels: MR imaging and histologic study in rabbits. Radiology 241:95–106

    Article  PubMed  Google Scholar 

  • McDannold N, Vykhodtseva N, Hynynen K (2008) Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood–brain barrier disruption. Ultrasound Med Biol 34:930–937, Epub 2008 Feb 2021

    Article  PubMed Central  PubMed  Google Scholar 

  • McWilliams JP, Lee EW, Yamamoto S, Loh CT, Kee ST (2010) Image-guided tumor ablation: emerging technologies and future directions. Semin Intervent Radiol 27:302–313

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller DL, Song J (2002) Lithotripter shock waves with cavitation nucleation agents produce tumor growth reduction and gene transfer in vivo. Ultrasound Med Biol 28:1343–1348

    Article  PubMed  Google Scholar 

  • Miller MW, Miller DL, Brayman AA (1996) A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol 22:1131–1154

    Article  CAS  PubMed  Google Scholar 

  • Miller DL, Kripfgans OD, Fowlkes JB, Carson PL (2000) Cavitation nucleation agents for nonthermal ultrasound therapy. J Acoust Soc Am 107:3480–3486

    Article  CAS  PubMed  Google Scholar 

  • Mohan P, Rapoport N (2010) Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking. Mol Pharm 7:1959–1973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nam KH, Christensen DA, Kennedy AM and Rapoport N (2009) Acoustic droplet vaporization, cavitation, and therapeutic properties of copolymer-stabilized perfluorocarbon nanoemulsions. Am Inst Phys Conf Proc 1113:124–128

    Google Scholar 

  • Needham D, Anyarambhatla G, Kong G, Dewhirst MW (2000) A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res 60:1197–1201

    CAS  PubMed  Google Scholar 

  • Negussie AH, Yarmolenko PS, Partanen A, Ranjan A, Jacobs G, Woods D, Bryant H, Thomasson D, Dewhirst MW, Wood BJ, Dreher MR (2011) Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. Int J Hyperthermia 27:140–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noth U, Morrissey SP, Deichmann R, Jung S, Adolf H, Haase A, Lutz J (1997) Perfluoro-15-crown-5-ether labelled macrophages in adoptive transfer experimental allergic encephalomyelitis. Artif Cells Blood Substit Immobil Biotechnol 25:243–254

    Article  CAS  PubMed  Google Scholar 

  • O’Neill BE, Rapoport N (2011) Phase-shift, stimuli-responsive drug carriers for targeted delivery. Ther Deliv 2:1165–1187

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • O’Neill BE, Vo H, Angstadt M, Li KP, Quinn T, Frenkel V (2009) Pulsed high intensity focused ultrasound mediated nanoparticle delivery: mechanisms and efficacy in murine muscle. Ultrasound Med Biol 35:416–424

    Article  PubMed Central  PubMed  Google Scholar 

  • Poon RTP, Borys N (2009) Lyso-thermosensitive liposomal doxorubicin: a novel approach to enhance efficacy of thermal ablation of liver cancer. Expert Opin Pharmacother 10:333–343

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Caskey CF, Ferrara KW (2009) Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys Med Biol 54:R27–R57

    Article  PubMed Central  PubMed  Google Scholar 

  • Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990

    Article  CAS  Google Scholar 

  • Rapoport N (2012a) Phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug delivery to cancer. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(5):492–510

    Article  CAS  Google Scholar 

  • Rapoport N (2012b) Ultrasound-mediated micellar drug delivery. Int J Hyperthermia 28:374–385

    Article  CAS  PubMed  Google Scholar 

  • Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99:1095–1106

    Article  CAS  PubMed  Google Scholar 

  • Rapoport NY, Efros AL, Christensen DA, Kennedy AM, Nam KH (2009a) Microbubble generation in phase-shift nanoemulsions used as anticancer drug carriers. Bubble Sci Eng Technol 1:31–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam K-H (2009b) Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 138:268–276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rapoport N, Christensen DA, Kennedy AM, Nam KH (2010a) Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers. Ultrasound Med Biol 36:419–429

    Article  PubMed Central  PubMed  Google Scholar 

  • Rapoport N, Kennedy AM, Shea JE, Scaife CL, Nam KH (2010b) Ultrasonic nanotherapy of pancreatic cancer: lessons from ultrasound imaging. Mol Pharm 7:22–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rapoport N, Nam K-H, Gupta R, Gao Z, Mohan P, Payne A, Todd N, Liu X, Kim T, Shea J, Scaife C, Kennedy AM, Parker DL, Jeong E-K (2011) Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release 153:4–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rapoport N, Payne A, Dillon C, Shea J, Scaife C, Gupta R (2013) Focused ultrasound-mediated drug delivery to pancreatic cancer in a mouse model. J Ther Ultrasound 1

    Google Scholar 

  • Reznik N, Williams R, Burns PN (2011) Investigation of vaporized submicron perfluorocarbon droplets as an ultrasound contrast agent. Ultrasound Med Biol 37:1271–1279

    Article  PubMed  Google Scholar 

  • Reznik N, Shpak O, Gelderblom EC, Williams R, de Jong N, Versluis M, Burns PN (2013) The efficiency and stability of bubble formation by acoustic vaporization of submicron perfluorocarbon droplets. Ultrasonics 53:1368–1376

    Article  CAS  PubMed  Google Scholar 

  • Reznik N, Lajoinie G, Shpak O, Gelderblom EC, Williams R, de Jong N, Versluis M, Burns PN (2014) On the acoustic properties of vaporized submicron perfluorocarbon droplets. Ultrasound Med Biol 40:1379–1384

    Article  PubMed  Google Scholar 

  • Schad KC, Hynynen K (2010) In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy. Phys Med Biol 55:4933–4947

    Article  PubMed  Google Scholar 

  • Schroeder A, Avnir Y, Weisman S, Najajreh Y, Gabizon A, Talmon Y, Kost J, Barenholz Y (2007) Controlling liposomal drug release with low frequency ultrasound: mechanism and feasibility. Langmuir 23:4019–4025

    Article  CAS  PubMed  Google Scholar 

  • Schroeder A, Honen R, Turjeman K, Gabizon A, Kost J, Barenholz Y (2009) Ultrasound triggered release of cisplatin from liposomes in murine tumors. J Control Release 137(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Segers T, Versluis M (2014) Acoustic bubble sorting for ultrasound contrast agent enrichment. Lab Chip 14:1705–1714

    Article  CAS  PubMed  Google Scholar 

  • Shaw GJ, Meunier JM, Huang SL, Lindsell CJ, McPherson DD, Holland CK (2009) Ultrasound-enhanced thrombolysis with tPA-loaded echogenic liposomes. Thromb Res 124:306–310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shea JE, Nam KH, Rapoport N, Scaife CL (2011) Genexol inhibits primary tumour growth and metastases in gemcitabine-resistant pancreatic ductal adenocarcinoma. HPB (Oxford) 13:153–157

    Article  Google Scholar 

  • Sheeran PS, Luois S, Dayton PA, Matsunaga TO (2011) Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound. Langmuir 27:10412–10420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shortencarier MJ, Dayton PA, Bloch SH, Schumann PA, Matsunaga TO, Ferrara KW (2004) A method for radiation-force localized drug delivery using gas-filled lipospheres. IEEE Trans Ultrason Ferroelectr Freq Control 51:822–831

    Article  PubMed  Google Scholar 

  • Shpak O, Kokhuis TJ, Luan Y, Lohse D, de Jong N, Fowlkes B, Fabiilli M, Versluis M (2013) Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets. J Acoust Soc Am 134:1610–1621

    Article  CAS  PubMed  Google Scholar 

  • Shpak O, Verweij M, Vos HJ, de Jong N, Lohse D, Versluis M (2014) Acoustic droplet vaporization is initiated by superharmonic focusing. Proc Natl Acad Sci U S A 111:1697–1702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith DA, Vaidya SS, Kopechek JA, Huang SL, Klegerman ME, McPherson DD, Holland CK (2010) Ultrasound-triggered release of recombinant tissue-type plasminogen activator from echogenic liposomes. Ultrasound Med Biol 36:145–157

    Article  PubMed Central  PubMed  Google Scholar 

  • Soman NR, Marsh JN, Hughes MS, Lanza GM, Wickline SA (2006) Acoustic activation of targeted liquid perfluorocarbon nanoparticles does not compromise endothelial integrity. IEEE Trans Nanobioscience 5:69–75

    Article  PubMed  Google Scholar 

  • Soman NR, Baldwin SL, Hu G, Marsh JN, Lanza GM, Heuser JE, Arbeit JM, Wickline SA, Schlesinger PH (2009) Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J Clin Invest 119:2830–2842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Staruch R, Chopra R, Hynynen K (2011) Localised drug release using MRI-controlled focused ultrasound hyperthermia. Int J Hyperthermia 27:156–171

    Article  CAS  PubMed  Google Scholar 

  • Stieger SM, Caskey CF, Adamson RH, Qin S, Curry FR, Wisner ER, Ferrara KW (2007) Enhancement of vascular permeability with low-frequency contrast-enhanced ultrasound in the chorioallantoic membrane model. Radiology 243:112–121

    Article  PubMed  Google Scholar 

  • Stone MJ, Frenkel V, Dromi S, Thomas P, Lewis RP, Li KC, Horne M 3rd, Wood BJ (2007) Pulsed-high intensity focused ultrasound enhanced tPA mediated thrombolysis in a novel in vivo clot model, a pilot study. Thromb Res 121:193–202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sutton JT, Haworth KJ, Pyne-Geithman G, Holland CK (2013a) Ultrasound-mediated drug delivery for cardiovascular disease. Expert Opin Drug Deliv 10:573–592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sutton JT, Ivancevich NM, Perrin SR Jr, Vela DC, Holland CK (2013b) Clot retraction affects the extent of ultrasound-enhanced thrombolysis in an ex vivo porcine thrombosis model. Ultrasound Med Biol 39:813–824

    Article  PubMed Central  PubMed  Google Scholar 

  • Tartis MS, McCallan J, Lum AF, LaBell R, Stieger SM, Matsunaga TO, Ferrara KW (2006) Therapeutic effects of paclitaxel-containing ultrasound contrast agents. Ultrasound Med Biol 32:1771–1780

    Article  PubMed  Google Scholar 

  • Ten Kate GL, van den Oord SC, Sijbrands EJ, van der Lugt A, de Jong N, Bosch JG, van der Steen AF, Schinkel AF (2013) Current status and future developments of contrast-enhanced ultrasound of carotid atherosclerosis. J Vasc Surg 57:539–546

    Article  PubMed  Google Scholar 

  • Thakkar D, Gupta R, Monson K, Rapoport N (2013) Effect of ultrasound on the permeability of vascular wall to nano-emulsion droplets. Ultrasound Med Biol 39:1804–1811

    Article  PubMed Central  PubMed  Google Scholar 

  • Thomas DH, Sboros V, Emmer M, Vos H, de Jong N (2013) Microbubble oscillations in capillary tubes. IEEE Trans Ultrason Ferroelectr Freq Control 60:105–114

    Article  PubMed  Google Scholar 

  • Tran TD, Caruthers SD, Hughes M, Marsh JN, Cyrus T, Winter PM, Neubauer AM, Wickline SA, Lanza GM (2007) Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. Int J Nanomedicine 2:515–526

    PubMed Central  CAS  PubMed  Google Scholar 

  • Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121:901–907

    Article  CAS  PubMed  Google Scholar 

  • Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R (2004) Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 56:1291–1314

    Article  CAS  PubMed  Google Scholar 

  • Vujaskovic Z, Kim DW, Jones E, Lan L, McCall L, Dewhirst MW, Craciunescu O, Stauffer P, Liotcheva V, Betof A, Blackwell K (2010) A phase I/II study of neoadjuvant liposomal doxorubicin, paclitaxel, and hyperthermia in locally advanced breast cancer. Int J Hyperthermia 26:514–521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vykhodtseva N, McDannold N, Hynynen K (2006) Induction of apoptosis in vivo in the rabbit brain with focused ultrasound and optison. Ultrasound Med Biol 32:1923–1929

    Article  PubMed  Google Scholar 

  • Vykhodtseva N, McDannold N, Hynynen K (2008) Progress and problems in the application of focused ultrasound for blood–brain barrier disruption. Ultrasonics 48:279–296, Epub 2008 Apr 2014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wheatley MA, Forsberg F, Oum K, Ro R, El-Sherif D (2006) Comparison of in vitro and in vivo acoustic response of a novel 50:50 PLGA contrast agent. Ultrasonics 44:360–367

    Article  CAS  PubMed  Google Scholar 

  • Wickline SA, Neubauer AM, Winter PM, Caruthers SD, Lanza GM (2007) Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J Magn Reson Imaging 25:667–680

    Article  PubMed  Google Scholar 

  • Wilson K, Homan K, Emelianov S (2012) Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat Commun 3:618

    Article  PubMed  CAS  Google Scholar 

  • Winter PM, Cai K, Caruthers SD, Wickline SA, Lanza GM (2007) Emerging nanomedicine opportunities with perfluorocarbon nanoparticles. Expert Rev Med Devices 4:137–145

    Article  CAS  PubMed  Google Scholar 

  • Winter PM, Caruthers SD, Zhang H, Williams TA, Wickline SA, Lanza GM (2008) Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc Imaging 1:624–634

    Article  PubMed Central  PubMed  Google Scholar 

  • Wong Z, Krifgans O, Qamar A, Fowlkes J, Bull J (2011) Bubble evolution in acoustic droplet vaporization at physiological temperature via ultra-high speed imaging. Soft Matter 7:4009–4016

    Article  CAS  Google Scholar 

  • Yarmolenko PS, Zhao Y, Landon C, Spasojevic I, Yuan F, Needham D, Viglianti BL, Dewhirst MW (2010) Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours. Int J Hyperthermia 26:485–498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu JX, Kodibagkar VD, Cui W, Mason RP (2005) 19 F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Curr Med Chem 12:819–848

    Article  CAS  PubMed  Google Scholar 

  • Yuh EL, Shulman SG, Mehta SA, Xie J, Chen L, Frenkel V, Bednarski MD, Li KC (2005) Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: study in a murine model. Radiology 234:431–437

    Article  PubMed  Google Scholar 

  • Zhang M, Fabiilli ML, Haworth KJ, Fowlkes JB, Kripfgans OD, Roberts WW, Ives KA, Carson PL (2010) Initial investigation of acoustic droplet vaporization for occlusion in canine kidney. Ultrasound Med Biol 36:1691–1703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng H, Kruse DE, Stephens DN, Ferrara KW, Sutcliffe P, Gardner E (2008) A sensitive ultrasonic imaging method for targeted contrast microbubble detection. Conf Proc IEEE Eng Med Biol Soc 2008:5290–5293

    PubMed  Google Scholar 

  • Zhou HF, Chan HW, Wickline SA, Lanza GM, Pham CT (2009) Alphavbeta3-targeted nanotherapy suppresses inflammatory arthritis in mice. FASEB J 23:2978–2985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalya Rapoport .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rapoport, N. (2016). Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery. In: Escoffre, JM., Bouakaz, A. (eds) Therapeutic Ultrasound. Advances in Experimental Medicine and Biology, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-319-22536-4_13

Download citation

Publish with us

Policies and ethics