Co-administration of Microbubbles and Drugs in Ultrasound-Assisted Drug Delivery: Comparison with Drug-Carrying Particles

  • Ryo Suzuki
  • Alexander L. KlibanovEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 880)


There are two alternative approaches to ultrasound-assisted drug delivery. First, the drug can be entrapped into or attached onto the ultrasound-responsive particles and administered in the vasculature, to achieve ultrasound-triggered drug release from the particles and localized tissue deposition in response to ultrasound treatment of the target zone. Second, the drug can be co-administered with the microbubbles or other sonosensitive particles. In this case, the action of ultrasound on the particles (which act as cavitation nuclei) results in the transient improvement of permeability of the physiological barriers, so that the circulating drug can exit the bloodstream and get into the target tissues and cells. We discuss and compare both of these approaches, their characteristic advantages and disadvantages for the specific drug delivery scenarios. Clearly, the system based on the off-label use of the existing approved microbubbles and drugs (or drug carriers) will have a chance of getting to clinical trials faster and with lesser resources spent. However, if a superior curative potential of a sonosensitive drug carrier is proven, and formulation stability problems are addressed properly, this approach may find its way to practical use, especially for nucleic acid delivery scenarios.


Co-administration of microbubbles Drug-carrying particles Drug delivery Ultrasound 



This study was supported in part via NIH R21 EB016752.


  1. Alonso A, Reinz E, Jenne JW, Fatar M, Schmidt-Glenewinkel H, Hennerici MG, Meairs S (2010) Reorganization of gap junctions after focused ultrasound blood-brain barrier opening in the rat brain. J Cerebr Blood Flow Metabol 30:1394–1402CrossRefGoogle Scholar
  2. Alter J, Sennoga CA, Lopes DM, Eckersley RJ, Wells DJ (2009) Microbubble stability is a major determinant of the efficiency of ultrasound and microbubble mediated in vivo gene transfer. Ultrasound Med Biol 35:976–984CrossRefPubMedGoogle Scholar
  3. Aryal M, Vykhodtseva N, Zhang YZ, Park J, McDannold N (2013) Multiple treatments with liposomal doxorubicin and ultrasound-induced disruption of blood-tumor and blood-brain barriers improve outcomes in a rat glioma model. J Control Release 169:103–111PubMedCentralCrossRefPubMedGoogle Scholar
  4. Bioley G, Bussat P, Lassus A, Schneider M, Terrettaz J, Corthesy B (2012a) The phagocytosis of gas-filled microbubbles by human and murine antigen-presenting cells. Biomaterials 33:333–342CrossRefPubMedGoogle Scholar
  5. Bioley G, Lassus A, Bussat P, Terrettaz J, Tranquart F, Corthesy B (2012b) Gas-filled microbubble-mediated delivery of antigen and the induction of immune responses. Biomaterials 33:5935–5946CrossRefPubMedGoogle Scholar
  6. Bioley G, Zehn D, Lassus A, Terrettaz J, Tranquart F, Corthesy B (2013) The effect of vaccines based on ovalbumin coupled to gas-filled microbubbles for reducing infection by ovalbumin-expressing Listeria monocytogenes. Biomaterials 34:5423–5430CrossRefPubMedGoogle Scholar
  7. Bohmer MR, Chlon CH, Raju BI, Chin CT, Shevchenko T, Klibanov AL (2010) Focused ultrasound and microbubbles for enhanced extravasation. J Control Release 148:18–24PubMedCentralCrossRefPubMedGoogle Scholar
  8. Burke CW, Suk JS, Kim AJ, Hsiang YH, Klibanov AL, Hanes J, Price RJ (2012) Markedly enhanced skeletal muscle transfection achieved by the ultrasound-targeted delivery of non-viral gene nanocarriers with microbubbles. J Control Release 162:414–421PubMedCentralCrossRefPubMedGoogle Scholar
  9. Chai R, Chen S, Ding J, Grayburn PA (2009) Efficient, glucose responsive and islet-specific transgene expression by a modified rat insulin promoter. Gene Ther 16:1202–1209PubMedCentralCrossRefPubMedGoogle Scholar
  10. Chen S, Ding JH, Bekeredjian R, Yang BZ, Shohet RV, Johnston SA, Hohmeier HE, Newgard CB, Grayburn PA (2006) Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. Proc Natl Acad Sci U S A 103:8469–8474PubMedCentralCrossRefPubMedGoogle Scholar
  11. Chen S, Ding J, Yu C, Yang B, Wood DR, Grayburn PA (2007) Reversal of streptozotocin-induced diabetes in rats by gene therapy with betacellulin and pancreatic duodenal homeobox-1. Gene Ther 14:1102–1110CrossRefPubMedGoogle Scholar
  12. Chen S, Shimoda M, Chen J, Matsumoto S, Grayburn PA (2012) Transient overexpression of cyclin D2/CDK4/GLP1 genes induces proliferation and differentiation of adult pancreatic progenitors and mediates islet regeneration. Cell Cycle 11:695–705PubMedCentralCrossRefPubMedGoogle Scholar
  13. Chen S, Bastarrachea RA, Roberts BJ, Voruganti VS, Frost PA, Nava-Gonzalez EJ, Arriaga-Cazares HE, Chen J, Huang P, DeFronzo RA, Comuzzie AG, Grayburn PA (2014) Successful beta cells islet regeneration in streptozotocin-induced diabetic baboons using ultrasound-targeted microbubble gene therapy with cyclinD2/CDK4/GLP1. Cell Cycle 13:1145–1151PubMedCentralCrossRefPubMedGoogle Scholar
  14. Christiansen JP, French BA, Klibanov AL, Kaul S, Lindner JR (2003) Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med Biol 29:1759–1767CrossRefPubMedGoogle Scholar
  15. Dayton P, Klibanov A, Brandenburger G, Ferrara K (1999) Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles. Ultrasound Med Biol 25:1195–1201CrossRefPubMedGoogle Scholar
  16. De Cock I, Zagato E, Braeckmans K, Luan Y, de Jong N, De Smedt SC, Lentacker I (2015) Ultrasound and microbubble mediated drug delivery: acoustic pressure as determinant for uptake via membrane pores or endocytosis. J Control Release 197:20–28CrossRefPubMedGoogle Scholar
  17. Endo-Takahashi Y, Negishi Y, Kato Y, Suzuki R, Maruyama K, Aramaki Y (2012) Efficient siRNA delivery using novel siRNA-loaded Bubble liposomes and ultrasound. Int J Pharm 422:504–509CrossRefPubMedGoogle Scholar
  18. Endo-Takahashi Y, Negishi Y, Nakamura A, Suzuki D, Ukai S, Sugimoto K, Moriyasu F, Takagi N, Suzuki R, Maruyama K, Aramaki Y (2013) pDNA-loaded Bubble liposomes as potential ultrasound imaging and gene delivery agents. Biomaterials 34:2807–2813CrossRefPubMedGoogle Scholar
  19. Endo-Takahashi Y, Negishi Y, Nakamura A, Ukai S, Ooaku K, Oda Y, Sugimoto K, Moriyasu F, Takagi N, Suzuki R, Maruyama K, Aramaki Y (2014) Systemic delivery of miR-126 by miRNA-loaded Bubble liposomes for the treatment of hindlimb ischemia. Sci Rep 4:3883PubMedCentralCrossRefPubMedGoogle Scholar
  20. Escoffre JM, Mannaris C, Geers B, Novell A, Lentacker I, Averkiou M, Bouakaz A (2013) Doxorubicin liposome-loaded microbubbles for contrast imaging and ultrasound-triggered drug delivery. IEEE Trans Ultrason Ferroelectr Freq Control 60:78–87PubMedGoogle Scholar
  21. Gao Z, Kennedy AM, Christensen DA, Rapoport NY (2008) Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics 48:260–270PubMedCentralCrossRefPubMedGoogle Scholar
  22. Geers B, Lentacker I, Sanders NN, Demeester J, Meairs S, De Smedt SC (2011) Self-assembled liposome-loaded microbubbles: the missing link for safe and efficient ultrasound triggered drug-delivery. J Control Release 152:249–256CrossRefPubMedGoogle Scholar
  23. Gemzar (1996) Prescribing information: Accessed 10 Jan 2015
  24. Greenleaf WJ, Bolander ME, Sarkar G, Goldring MB, Greenleaf JF (1998) Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound Med Biol 24:587–595CrossRefPubMedGoogle Scholar
  25. Hatakeyama H, Murata M, Sato Y, Takahashi M, Minakawa N, Matsuda A, Harashima H (2014) The systemic administration of an anti-miRNA oligonucleotide encapsulated pH-sensitive liposome results in reduced level of hepatic microRNA-122 in mice. J Control Release 173:43–50CrossRefPubMedGoogle Scholar
  26. Hu Y, Wan JM, Yu AC (2013) Membrane perforation and recovery dynamics in microbubble-mediated sonoporation. Ultrasound Med Biol 39:2393–2405CrossRefPubMedGoogle Scholar
  27. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2003) Non-invasive opening of BBB by focused ultrasound. Acta Neurochir Suppl 86:555–558PubMedGoogle Scholar
  28. Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N (2005) Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 24:12–20CrossRefPubMedGoogle Scholar
  29. Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA, Sheikov N (2006) Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J Neurosurg 105:445–454CrossRefPubMedGoogle Scholar
  30. Javadi M, Pitt WG, Belnap DM, Tsosie NH, Hartley JM (2012) Encapsulating nanoemulsions inside eLiposomes for ultrasonic drug delivery. Langmuir 28:14720–14729CrossRefPubMedGoogle Scholar
  31. Javadi M, Pitt WG, Tracy CM, Barrow JR, Willardson BM, Hartley JM, Tsosie NH (2013) Ultrasonic gene and drug delivery using eLiposomes. J Control Release 167:92–100CrossRefPubMedGoogle Scholar
  32. Klibanov AL (2005) Ligand-carrying gas-filled microbubbles: ultrasound contrast agents for targeted molecular imaging. Bioconjug Chem 16:9–17CrossRefPubMedGoogle Scholar
  33. Klibanov AL, Shevchenko TI, Raju BI, Seip R, Chin CT (2010) Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: a tool for targeted drug delivery. J Control Release 148:13–17PubMedCentralCrossRefPubMedGoogle Scholar
  34. Kodama T, Tomita N, Horie S, Sax N, Iwasaki H, Suzuki R, Maruyama K, Mori S, Manabu F (2010) Morphological study of acoustic liposomes using transmission electron microscopy. J Electron Microsc 59:187–196CrossRefGoogle Scholar
  35. Koebis M, Kiyatake T, Yamaura H, Nagano K, Higashihara M, Sonoo M, Hayashi Y, Negishi Y, Endo-Takahashi Y, Yanagihara D, Matsuda R, Takahashi MP, Nishino I, Ishiura S (2013) Ultrasound-enhanced delivery of morpholino with Bubble liposomes ameliorates the myotonia of myotonic dystrophy model mice. Sci Rep 3:2242PubMedCentralCrossRefPubMedGoogle Scholar
  36. Kotopoulis S, Dimcevski G, Gilja OH, Hoem D, Postema M (2013) Treatment of human pancreatic cancer using combined ultrasound, microbubbles, and gemcitabine: a clinical case study. Med Phys 40:072902CrossRefPubMedGoogle Scholar
  37. Kurosaki T, Kawakami S, Higuchi Y, Suzuki R, Maruyama K, Sasaki H, Yamashita F, Hashida M (2014) Development of anionic bubble lipopolyplexes for efficient and safe gene transfection with ultrasound exposure in mice. J Control Release 176:24–34CrossRefPubMedGoogle Scholar
  38. Lammertink B, Deckers R, Storm G, Moonen C, Bos C (2014) Duration of ultrasound-mediated enhanced plasma membrane permeability. Int J Pharm 482(1–2):92–8PubMedGoogle Scholar
  39. Lattin JR, Belnap DM, Pitt WG (2012a) Formation of eLiposomes as a drug delivery vehicle. Colloids Surf B Biointerfaces 89:93–100CrossRefPubMedGoogle Scholar
  40. Lattin JR, Pitt WG, Belnap DM, Husseini GA (2012b) Ultrasound-induced calcein release from eLiposomes. Ultrasound Med Biol 38:2163–2173CrossRefPubMedGoogle Scholar
  41. Lin CY, Javadi M, Belnap DM, Barrow JR, Pitt WG (2014) Ultrasound sensitive eLiposomes containing doxorubicin for drug targeting therapy. Nanomedicine 10:67–76CrossRefPubMedGoogle Scholar
  42. Marin A, Muniruzzaman M, Rapoport N (2001) Acoustic activation of drug delivery from polymeric micelles: effect of pulsed ultrasound. J Control Release 71:239–249CrossRefPubMedGoogle Scholar
  43. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392PubMedGoogle Scholar
  44. McCreery TP, Sweitzer RH, Unger EC (2004) DNA delivery to cells in culture using ultrasound. Methods Mol Biol 245:287–292PubMedGoogle Scholar
  45. Meijering BD, Juffermans LJ, van Wamel A, Henning RH, Zuhorn IS, Emmer M, Versteilen AM, Paulus WJ, van Gilst WH, Kooiman K, de Jong N, Musters RJ, Deelman LE, Kamp O (2009) Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ Res 104:679–687CrossRefPubMedGoogle Scholar
  46. Mohan P, Rapoport N (2010) Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking. Mol Pharm 7:1959–1973PubMedCentralCrossRefPubMedGoogle Scholar
  47. Muller OJ, Schinkel S, Kleinschmidt JA, Katus HA, Bekeredjian R (2008) Augmentation of AAV-mediated cardiac gene transfer after systemic administration in adult rats. Gene Ther 15:1558–1565CrossRefPubMedGoogle Scholar
  48. Nance E, Timbie K, Miller GW, Song J, Louttit C, Klibanov AL, Shih TY, Swaminathan G, Tamargo RJ, Woodworth GF, Hanes J, Price RJ (2014a) Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood-brain barrier using MRI-guided focused ultrasound. J Control Release 189:123–132PubMedCentralCrossRefPubMedGoogle Scholar
  49. Nance E, Zhang C, Shih TY, Xu Q, Schuster BS, Hanes J (2014b) Brain-penetrating nanoparticles improve paclitaxel efficacy in malignant glioma following local administration. ACS Nano 8:10655–10664PubMedCentralCrossRefPubMedGoogle Scholar
  50. Negishi Y, Endo Y, Fukuyama T, Suzuki R, Takizawa T, Omata D, Maruyama K, Aramaki Y (2008) Delivery of siRNA into the cytoplasm by liposomal bubbles and ultrasound. J Control Release 132:124–130CrossRefPubMedGoogle Scholar
  51. Negishi Y, Endo-Takahashi Y, Ishii K, Suzuki R, Oguri Y, Murakami T, Maruyama K, Aramaki Y (2011) Development of novel nucleic acid-loaded Bubble liposomes using cholesterol-conjugated siRNA. J Drug Target 19:830–836CrossRefPubMedGoogle Scholar
  52. Panje CM, Wang DS, Pysz MA, Paulmurugan R, Ren Y, Tranquart F, Tian L, Willmann JK (2012) Ultrasound-mediated gene delivery with cationic versus neutral microbubbles: effect of DNA and microbubble dose on in vivo transfection efficiency. Theranostics 2:1078–1091PubMedCentralCrossRefPubMedGoogle Scholar
  53. Phillips LC, Dhanaliwala AH, Klibanov AL, Hossack JA, Wamhoff BR (2011) Focused ultrasound-mediated drug delivery from microbubbles reduces drug dose necessary for therapeutic effect on neointima formation--brief report. Arterioscler Thromb Vasc Biol 31:2853–2855PubMedCentralCrossRefPubMedGoogle Scholar
  54. Phillips LC, Klibanov AL, Wamhoff BR, Hossack JA (2012) Intravascular ultrasound detection and delivery of molecularly targeted microbubbles for gene delivery. IEEE Trans Ultrason Ferroelectr Freq Control 59:1596–1601CrossRefPubMedGoogle Scholar
  55. Price RJ, Skyba DM, Kaul S, Skalak TC (1998) Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation 98:1264–1267CrossRefPubMedGoogle Scholar
  56. Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam KH (2009a) Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 138:268–276PubMedCentralCrossRefPubMedGoogle Scholar
  57. Rapoport NY, Nam KH, Gao Z, Kennedy A (2009b) Application of ultrasound for targeted nanotherapy of malignant tumors. Acoust Phys 55:594–601PubMedCentralCrossRefPubMedGoogle Scholar
  58. Rapoport N, Nam KH, Gupta R, Gao Z, Mohan P, Payne A, Todd N, Liu X, Kim T, Shea J, Scaife C, Parker DL, Jeong EK, Kennedy AM (2011) Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release 153:4–15PubMedCentralCrossRefPubMedGoogle Scholar
  59. Raymond SB, Treat LH, Dewey JD, McDannold NJ, Hynynen K, Bacskai BJ (2008) Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer’s disease mouse models. PLoS One 3:e2175PubMedCentralCrossRefPubMedGoogle Scholar
  60. Rodallec M, Vilgrain V, Couvelard A, Rufat P, O’Toole D, Barrau V, Sauvanet A, Ruszniewski P, Menu Y (2006) Endocrine pancreatic tumours and helical CT: contrast enhancement is correlated with microvascular density, histoprognostic factors and survival. Pancreatology 6:77–85CrossRefPubMedGoogle Scholar
  61. Samiotaki G, Konofagou EE (2013) Dependence of the reversibility of focused- ultrasound-induced blood-brain barrier opening on pressure and pulse length in vivo. IEEE Trans Ultrason Ferroelectr Freq Control 60:2257–2265PubMedCentralCrossRefPubMedGoogle Scholar
  62. Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K (2004) Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 30:979–989CrossRefPubMedGoogle Scholar
  63. Shiraishi K, Endoh R, Furuhata H, Nishihara M, Suzuki R, Maruyama K, Oda Y, Jo J, Tabata Y, Yamamoto J, Yokoyama M (2011) A facile preparation method of a PFC-containing nano-sized emulsion for theranostics of solid tumors. Int J Pharm 421:379–387CrossRefPubMedGoogle Scholar
  64. Sirsi SR, Hernandez SL, Zielinski L, Blomback H, Koubaa A, Synder M, Homma S, Kandel JJ, Yamashiro DJ, Borden MA (2012) Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors. J Control Release 157(2):224–234. doi: 10.1016/j.jconrel.2011.09.071 CrossRefPubMedGoogle Scholar
  65. Skyba DM, Price RJ, Linka AZ, Skalak TC, Kaul S (1998) Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue. Circulation 98:290–293CrossRefPubMedGoogle Scholar
  66. Suzuki R, Takizawa T, Negishi Y, Hagisawa K, Tanaka K, Sawamura K, Utoguchi N, Nishioka T, Maruyama K (2007) Gene delivery by combination of novel liposomal bubbles with perfluoropropane and ultrasound. J Control Release 117:130–136CrossRefPubMedGoogle Scholar
  67. Suzuki R, Takizawa T, Negishi Y, Utoguchi N, Sawamura K, Tanaka K, Namai E, Oda Y, Matsumura Y, Maruyama K (2008) Tumor specific ultrasound enhanced gene transfer in vivo with novel liposomal bubbles. J Control Release 125:137–144CrossRefPubMedGoogle Scholar
  68. Tartis MS, McCallan J, Lum AF, LaBell R, Stieger SM, Matsunaga TO, Ferrara KW (2006) Therapeutic effects of paclitaxel-containing ultrasound contrast agents. Ultrasound Med Biol 32:1771–1780CrossRefPubMedGoogle Scholar
  69. Taylor SL, Rahim AA, Bush NL, Bamber JC, Porter CD (2007) Targeted retroviral gene delivery using ultrasound. J Gene Med 9:77–87CrossRefPubMedGoogle Scholar
  70. Tlaxca JL, Anderson CR, Klibanov AL, Lowrey B, Hossack JA, Alexander JS, Lawrence MB, Rychak JJ (2010) Analysis of in vitro transfection by sonoporation using cationic and neutral microbubbles. Ultrasound Med Biol 36:1907–1918PubMedCentralCrossRefPubMedGoogle Scholar
  71. Tlaxca JL, Rychak JJ, Ernst PB, Konkalmatt PR, Shevchenko TI, Pizarro TT, Rivera-Nieves J, Klibanov AL, Lawrence MB (2013) Ultrasound-based molecular imaging and specific gene delivery to mesenteric vasculature by endothelial adhesion molecule targeted microbubbles in a mouse model of Crohn's disease. J Control Release 165:216–225PubMedCentralCrossRefPubMedGoogle Scholar
  72. Treat LH, McDannold N, Zhang Y, Vykhodtseva N, Hynynen K (2012) Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. Ultrasound Med Biol 38:1716–1725PubMedCentralCrossRefPubMedGoogle Scholar
  73. Un K, Kawakami S, Suzuki R, Maruyama K, Yamashita F, Hashida M (2010a) Development of an ultrasound-responsive and mannose-modified gene carrier for DNA vaccine therapy. Biomaterials 31:7813–7826CrossRefPubMedGoogle Scholar
  74. Un K, Kawakami S, Suzuki R, Maruyama K, Yamashita F, Hashida M (2010b) Enhanced transfection efficiency into macrophages and dendritic cells by a combination method using mannosylated lipoplexes and bubble liposomes with ultrasound exposure. Hum Gene Ther 21:65–74CrossRefPubMedGoogle Scholar
  75. Un K, Kawakami S, Suzuki R, Maruyama K, Yamashita F, Hashida M (2011) Suppression of melanoma growth and metastasis by DNA vaccination using an ultrasound-responsive and mannose-modified gene carrier. Mol Pharm 8:543–554CrossRefPubMedGoogle Scholar
  76. Un K, Kawakami S, Yoshida M, Higuchi Y, Suzuki R, Maruyama K, Yamashita F, Hashida M (2012) Efficient suppression of murine intracellular adhesion molecule-1 using ultrasound-responsive and mannose-modified lipoplexes inhibits acute hepatic inflammation. Hepatology 56:259–269CrossRefPubMedGoogle Scholar
  77. Unger EC, McCreery TP, Sweitzer RH (1997) Ultrasound enhances gene expression of liposomal transfection. Invest Radiol 32:723–727CrossRefPubMedGoogle Scholar
  78. Unger EC, McCreery TP, Sweitzer RH, Caldwell VE, Wu Y (1998) Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent. Invest Radiol 33:886–892CrossRefPubMedGoogle Scholar
  79. Vandenbroucke RE, Lentacker I, Demeester J, De Smedt SC, Sanders NN (2008) Ultrasound assisted siRNA delivery using PEG-siPlex loaded microbubbles. J Control Release 126:265–273CrossRefPubMedGoogle Scholar
  80. Villanueva FS, Jankowski RJ, Klibanov S, Pina ML, Alber SM, Watkins SC, Brandenburger GH, Wagner WR (1998) Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation 98:1–5CrossRefPubMedGoogle Scholar
  81. Wang DS, Panje C, Pysz MA, Paulmurugan R, Rosenberg J, Gambhir SS, Schneider M, Willmann JK (2012) Cationic versus neutral microbubbles for ultrasound-mediated gene delivery in cancer. Radiology 264:721–732PubMedCentralCrossRefPubMedGoogle Scholar
  82. Wible JH Jr, Galen KP, Wojdyla JK, Hughes MS, Klibanov AL, Brandenburger GH (2002) Microbubbles induce renal hemorrhage when exposed to diagnostic ultrasound in anesthetized rats. Ultrasound Med Biol 28:1535–1546CrossRefPubMedGoogle Scholar
  83. Yan F, Li L, Deng Z, Jin Q, Chen J, Yang W, Yeh CK, Wu J, Shandas R, Liu X, Zheng H (2013) Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J Control Release 166:246–255CrossRefPubMedGoogle Scholar
  84. Yang D, Gao YH, Tan KB, Zuo ZX, Yang WX, Hua X, Li PJ, Zhang Y, Wang G (2013) Inhibition of hepatic fibrosis with artificial microRNA using ultrasound and cationic liposome-bearing microbubbles. Gene Ther 20:1140–1148CrossRefPubMedGoogle Scholar
  85. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752–3756PubMedGoogle Scholar
  86. Zhang K, Chen H, Li F, Wang Q, Zheng S, Xu H, Ma M, Jia X, Chen Y, Mou J, Wang X, Shi J (2014) A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery. Biomaterials 35:5875–5885CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Cardiovascular DivisionRobert M Berne Cardiovascular Research Center, University of VirginiaCharlottesvilleUSA
  2. 2.Department of Drug and Gene Delivery SystemFaculty of Pharma-Sciences, Teikyo UniversityTokyoJapan

Personalised recommendations