Advertisement

HIFU Tissue Ablation: Concept and Devices

  • Gail ter HaarEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 880)

Abstract

High intensity focused ultrasound (HIFU) is rapidly gaining clinical acceptance as a technique capable of providing non-invasive heating and ablation for a wide range of applications. Usually requiring only a single session, treatments are often conducted as day case procedures, with the patient either fully conscious, lightly sedated or under light general anesthesia. HIFU scores over other thermal ablation techniques because of the lack of necessity for the transcutaneous insertion of probes into the target tissue. Sources placed either outside the body (for treatment of tumors or abnormalities of the liver, kidney, breast, uterus, pancreas brain and bone), or in the rectum (for treatment of the prostate), provide rapid heating of a target tissue volume, the highly focused nature of the field leaving tissue in the ultrasound propagation path relatively unaffected. Numerous extra-corporeal, transrectal and interstitial devices have been designed to optimize application-specific treatment delivery for the wide-ranging areas of application that are now being explored with HIFU. Their principle of operation is described here, and an overview of their design principles is given.

Keywords

Ultrasound therapy Thermal ablation Cancer Heating High Intensity Focused Ultrasound (HIFU) Ultrasound transducers 

Notes

Acknowledgements

I should like to thank my team at the ICR for providing me with photographs and figures, most especially Drs Ian Rivens, John Civale, David Sinden and Pierre Gelat.

References

  1. Al-Bataineh O, Jenne J, Huber P (2012) Clinical and future applications of high intensity focused ultrasound in cancer. Cancer Treat Rev 38:346–353PubMedCrossRefGoogle Scholar
  2. Aptel F, Charrel T, Lafon C, Romano F, Chapelon JY, Blumen-Ohana E, Denis P (2011) Miniaturized high-intensity focused ultrasound device in patients with glaucoma: a clinical pilot study. Investig Ophthalmol Vis Sci 52:8747–8753CrossRefGoogle Scholar
  3. Aptel F, Dupuy C, Rouland JF (2014) Treatment of refractory open-angle glaucoma using ultrasonic circular cyclocoagulation: a prospective case series. Curr Med Res Opin 30:1599–1605PubMedCrossRefGoogle Scholar
  4. Aubry JF, Pernot M, Marquet F, Tanter M, Fink M (2008) Transcostal high-intensity-focused ultrasound: ex vivo adaptive focusing feasibility study. Phys Med Biol 53:2937–2951PubMedCentralPubMedCrossRefGoogle Scholar
  5. Aubry JF, Tanter M, Pernot M, Thomas JL, Fink M (2003) Experimental demonstration of noninvasive trans-skull adaptive focusing based on prior computed tomography scans. J Acoust Soc Am 113:84–93PubMedCrossRefGoogle Scholar
  6. Baco E, Gelet A, Crouzet S, Rud E, Rouvière O, Tonoli‐Catez H, Eggesbø HB (2014) Hemi salvage high‐intensity focused ultrasound (HIFU) in unilateral radiorecurrent prostate cancer: a prospective two‐centre study. BJU Int 114:532–540PubMedCrossRefGoogle Scholar
  7. Bacon DR (1982) Characteristics of a PVDF membrane hydrophone for use in the range 1–100 MHz. IEEE Trans Sonics Ultrasonics 29:18–25CrossRefGoogle Scholar
  8. Bailey MR, Maxwell AD, Pishchalnikov YA, Sapozhnikov OA (2011) Polyvinylidene fluoride membrane hydrophone low‐frequency response to medical shockwaves. J Acoust Soc Am 129:2677–2677CrossRefGoogle Scholar
  9. Ballantine HT, Bell E, Manlapaz J (1960) Progress and problems in the neurological application of focused ultrasound. J Neurosurg 17:858–876PubMedCrossRefGoogle Scholar
  10. Casper AJ, Liu D, Ballard JR, Ebbini ES (2013) Real-time implementation of a dual-mode ultrasound array system: in vivo results. IEEE Trans Biomed Eng 60:2751–2759PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chan AH, Fujimoto VY, Moore DE, Martin RW, Vaezy S (2002) An image-guided high intensity focused ultrasound device for uterine fibroids treatment. Med Phys 29:2611–2620PubMedCrossRefGoogle Scholar
  12. Chapelon JY, Cathignol D, Cain C, Ebbini E, Kluiwstra JU, Sapozhnikov OA, Guey JL (2000) New piezoelectric transducers for therapeutic ultrasound. Ultrasound Med Biol 26:153–159PubMedCrossRefGoogle Scholar
  13. Chaussy C, Thuroff S, de la Rosette JJMC (2001) Results and side effects of high-intensity focused ultrasound in localized prostate cancer. J Endourol 15:437–440PubMedCrossRefGoogle Scholar
  14. Chen W, Wang Z, Wu F, Zhu H, Zou J, Bai J, Li K, Xie F (2002) High intensity focused ultrasound in the treatment of primary malignant bone tumor. Zhonghua Zhong Liu Za Zhi 24:612–615PubMedGoogle Scholar
  15. Chen WS, Brayman AA, Matula TJ, Crum LA (2003) Inertial cavitation dose and hemolysis produced in vitro with or without Optison®. Ultrasound Med Biol 29:725–737PubMedCrossRefGoogle Scholar
  16. Chen W, Zhou K (2005) High-intensity focused ultrasound ablation: a new strategy to manage primary bone tumors. Curr Opin Orthop 16:494–500CrossRefGoogle Scholar
  17. Chen GS, Lin CY, Jeong JS, Cannata JM, Lin WL, Chang H, Shung KK (2012) Design and characterization of dual-curvature 1.5-dimensional high-intensity focused ultrasound phased-array transducer. IEEE Trans Ultrason Ferroelectr Freq Control 59:150–155PubMedCentralPubMedCrossRefGoogle Scholar
  18. Civale J, Clarke RL, Rivens IH, ter Haar GR (2006) The use of a segmented transducer for rib sparing in HIFU treatments. Ultrasound Med Biol 32:1753–1761PubMedCrossRefGoogle Scholar
  19. Clement GT, Hynynen K (2002a) Micro-receiver guided transcranial beam steering. IEEE Trans Ultrason Ferroelectr Freq Control 49:447–453PubMedCrossRefGoogle Scholar
  20. Clement GT, Hynynen K (2002b) A non-invasive method for focusing ultrasound through the skull. Phys Med Biol 47:1219–1236PubMedCrossRefGoogle Scholar
  21. Coleman DJ, Lizzi FL, El-Mofty AAM, Driller J, Franzen LA (1980) Ultrasonically accelerated absorption of vitreous membranes. Am J Ophthalmol 89:490–499PubMedCrossRefGoogle Scholar
  22. Coleman DJ, Lizzi FL, Torpey JH, Burgess SEP, Driller J, Rosado A, Nguyen HT (1985a) Treatment of experimental lens capsular tears with intense focused ultrasound. Br J Ophthalmol 69:645–649PubMedCentralPubMedCrossRefGoogle Scholar
  23. Coleman DJ, Lizzi FL, Driller J, Rosado AL, Burgess SEP, Torpey JH, Smith ME, Silverman RH, Yablonski ME, Chang S et al (1985b) Therapeutic ultrasound in the treatment of Glaucoma – II Clinical Applications. Ophthalmol 92:347–353CrossRefGoogle Scholar
  24. Couppis A, Damianou C, Kyriacou P, Lafon C, Chavrier F, Chapelon JY, Birer A (2012) Heart ablation using a planar rectangular high intensity ultrasound transducer and MRI guidance. Ultrasonics 52:821–829PubMedCrossRefGoogle Scholar
  25. Crouzet S, Rouvière O, Lafon C, Chapelon JY, Gelet A (2015) Focal High-Intensity Focused Ultrasound (HIFU). In: Technical aspects of focal therapy in localized prostate cancer. Springer, Paris, pp 137–151Google Scholar
  26. Crouzet S, Rouviere O, Martin X, Gelet A (2014) High-intensity focused ultrasound as focal therapy of prostate cancer. Curr Opin Urol 24:225–230PubMedCrossRefGoogle Scholar
  27. Daum DR, Hynynen K (1999) A 256-element ultrasonic phased array system for the treatment of large volumes of deep seated tissue. IEEE Trans Ultrason Ferroelectr Freq Control 46:1254–1268PubMedCrossRefGoogle Scholar
  28. Dickinson L, Ahmed H, McCartan N, Weir S, Hindley R, Lewi H, Cornaby A et al (2013) 553 Five year oncological outcomes following whole gland primary HIFU from the UK independent HIFU registry. J Urol 189, e227CrossRefGoogle Scholar
  29. Duck FA (2013) Physical properties of tissues: a comprehensive reference book. Academic press, LondonGoogle Scholar
  30. Dupenloup F, Chapelon J-Y, Cathignol DJ, Sapozhnikov OA (1996) Reduction of the grating lobes of annular arrays used in focused ultrasound surgery. IEEE Trans Ultrason Ferroelectr Freq Control 43:991–998CrossRefGoogle Scholar
  31. Dupré A, Melodelima D, Pérol D, Chen Y, Vincenot J, Chapelon JY, Rivoire M (2015) First clinical experience of intra-operative high intensity focused ultrasound in patients with colorectal liver metastases: a phase I-IIa study. PLoS One 10, e0118212PubMedCentralPubMedCrossRefGoogle Scholar
  32. Ebbini ES, Yao H, Shrestha A (2006) Dual-mode ultrasound phased arrays for image-guided surgery. Ultrason Imaging 28:65–82PubMedCrossRefGoogle Scholar
  33. Elias WJ, Huss D, Voss T, Loomba J, Khaled M, Zadicario E, Frysinger RC, Sperling SA, Wylie S, Monteith SJ, Druzgal J, Shah BB, Harrison M, Wintermark M (2013) A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med 369:640–648PubMedCrossRefGoogle Scholar
  34. Ellens N, Lucht BBC, Gunaseelan ST, Hudson JM, Hynynen KH (2015) A novel, flat, electronically-steered phased array transducer for tissue ablation:preliminary results. Phys Med Biol 60:2195–2215PubMedCrossRefGoogle Scholar
  35. Filonenko EA, Gavrilov LR, Khokhlova VA, Hand JW (2004) Heating of biological tissues by two-dimensional phased arrays with random and regular element distributions. Acoust Phys 50:222–231CrossRefGoogle Scholar
  36. Fjield T, Silcox CE, Hynynen K (1999) Low-profile lenses for ultrasound surgery. Phys Med Biol 44:1803–1813PubMedCrossRefGoogle Scholar
  37. Froeling VK, Meckelburg NF, Schreiter C, Scheurig-Muenkler J, Kamp MH, Maurer A, Beck A, Hamm B, Kroencke TJ (2013) Outcome of uterine artery embolization versus MR-guided high-intensity focused ultrasound treatment for uterine fibroids: long-term results. Eur J Radiol 82:2265–2269PubMedCrossRefGoogle Scholar
  38. Fry WJ (1953) Action of ultrasound on nerve tissue—a review. J Acoust Soc Am 25:1–5CrossRefGoogle Scholar
  39. Fry FJ (1958) Precision high intensity focused ultrasonic machines for surgery. Am J Phys Med 37:152–156PubMedGoogle Scholar
  40. Fry FJ (1977) Transkull transmission of an intense focused ultrasonic beam. Ultrasound Med Biol 3:179–189PubMedCrossRefGoogle Scholar
  41. Fry WJ, Mosberg WH, Barnard JW, Fry FJ (1954) Production of focal destructive lesions in the central nervous system with ultrasound. J Neurosurg 11:471–478PubMedCrossRefGoogle Scholar
  42. Fry FJ, Ades HW, Fry WJ (1958) Production of reversible changes in the central nervous system by ultrasound. Science 127:83–84PubMedCrossRefGoogle Scholar
  43. Fry WJ, Fry FJ (1960) Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Med Electron ME-7:166–181PubMedCrossRefGoogle Scholar
  44. Gavrilov LR, Hand JW (2000) Two-dimensional phased arrays for surgery: movement of a single focus. Acoust Phys 46:390–399CrossRefGoogle Scholar
  45. Gavrilov LR, Hand JW, Abel P, Cain CA (1997) A method of reducing grating lobes associated with an ultrasound linear phased array intended for transrectal thermotherapy. IEEE Trans Ultrason Ferroelectr Freq Control 44:1010–1017CrossRefGoogle Scholar
  46. Gavrilov LR, Hand JW, Yushina IG (2000) Two-dimensional phased arrays for application in surgery: scanning by several focuses. Acoust Phys 46:551–558CrossRefGoogle Scholar
  47. Gelet A, Chapelon JY, Margonari J, Theilliere Y, Gorry F, Souchon R, Bouvier R (1993) High-intensity focused ultrasound experimentation on human benign prostatic hypertrophy. Eur Urol 23:44–47PubMedGoogle Scholar
  48. Gelet A et al (2004) Local recurrence of prostate cancer after external beam radiotherapy: early experience of salvage therapy using high-intensity focused ultrasonography. Urology 63:625–629Google Scholar
  49. Goss SA, Johnston RL, Dunn F (1980) Compilation of empirical ultrasonic properties of mammalian tissues. II. J Acoust Soc Am 68:93–108PubMedCrossRefGoogle Scholar
  50. Goss SA, Frizell LA, Kouzmanoff JT, Barich JM, Yang JM (1996) Sparse random ultrasound phased array for focal surgery. IEEE Trans Ultrason Ferroelectr Freq Control 43:1111–1121CrossRefGoogle Scholar
  51. ter Haar GR, Coussios CC (2007) HIFU physical principles & devices. Int J Hyperthermia 23:89–104PubMedCrossRefGoogle Scholar
  52. ter Haar G (2010) Ultrasound bioeffects and safety. Proc Inst Mech Eng H 224:363–373PubMedCrossRefGoogle Scholar
  53. ter Haar G, Shaw A, Pye S, Ward B, Bottomley F, Nolan R, Coady AM (2011) Guidance on reporting ultrasound exposure conditions for bioeffects studies. Ultrasound Med Biol 37:177–183PubMedCrossRefGoogle Scholar
  54. Hand JW, Shaw A, Sadhoo N, Rajagopal S, Dickinson RJ, Gavrilov LR (2009) A random phased array device for delivery of high intensity focused ultrasound. Phys Med Biol 54:5675–5693PubMedCrossRefGoogle Scholar
  55. Hesley GK, Gorny KR, Woodrum DA (2013) MR-guided focused ultrasound for the treatment of uterine fibroids. Cardiovasc Intervent Radiol 36:5–13PubMedCrossRefGoogle Scholar
  56. Hill CR, Rivens IH, Vaughan MG, ter Haar GR (1994) Lesion development in focused ultrasound surgery: a general model. Ultrasound Med Biol 20:259–269PubMedCrossRefGoogle Scholar
  57. Holt RG, Roy RA (2001) Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material. Ultrasound Med Biol 27:1399–1412PubMedCrossRefGoogle Scholar
  58. Hwang JH, Tu J, Brayman AA, Matula TJ, Crum LA (2006) Correlation between inertial cavitation dose and endothelial cell damage in vivo. Ultrasound Med Biol 32:1611–1619PubMedCrossRefGoogle Scholar
  59. Hurwitz MD, Ghanouni P, Kanaev SV, Iozeffi D, Gianfelice D, Fennessy FM, Kuten A, Meyer JE, LeBlang SD, Roberts A, Choi J, Larner JM, Napoli A, Turkevich VG, Inbar Y, Tempany CM, Pfeller RM (2014) Magnetic resonance-guided focused ultrasound for patients with painful bone metastases: phase III trial results. J Natl Cancer Inst 106:1–9CrossRefGoogle Scholar
  60. Hutchinson EB, Buchanan MT, Hynynen K (1996) Design and optimization of an aperiodic ultrasound phased array for intracavitary prostate thermal therapies. Med Phys 23:767–776PubMedCrossRefGoogle Scholar
  61. Hynynen K, Chung A, Fjield T, Buchanan M, Daum D, Colucci V, Lopath P, Jolesz F (1996) Feasibility of using ultrasound phased arrays for MRI monitored noninvasive surgery. IEEE Trans Ultrason Ferroelectr Freq Control 43:1043–1053CrossRefGoogle Scholar
  62. Hynynen K, Sun J (1999) Transskull ultrasound therapy: The feasibility of using image derived skull thickness information to correct the phase distortion. IEEE Trans Ultrason Ferroelectr Freq Control 46:752–755PubMedCrossRefGoogle Scholar
  63. Illing RO, Kennedy JE, Wu F, ter Haar GR, Protheroe AS, Friend PJ, Gleeson FV, Cranston DW, Philips RR, Middleton MR (2005) The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br J Cancer 93:890–895PubMedCentralPubMedCrossRefGoogle Scholar
  64. Khokhlova VA, Bailey MR, Reed JA, Cunitz BW, Kaczkowski PJ, Crum LA (2006) Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom. J Acoust Soc Am 119:1834–1848PubMedCrossRefGoogle Scholar
  65. Khuri-Yakub BT, Oralkan Ö (2011) Capacitive micromachined ultrasonic transducers for medical imaging and therapy. J Micromech Microeng 21:054004PubMedCentralCrossRefGoogle Scholar
  66. Kovatcheva R, Vlahov J, Stoinov J, Lacoste F, Ortuno C, Zaletel K (2014) US-guided high-intensity focused ultrasound as a promising non-invasive method for treatment of primary hyperparathyroidism. Eur Radiol 24:2052–2058PubMedCrossRefGoogle Scholar
  67. Kovatcheva R, Guglielmina JN, Abehsera M, Boulanger L, Laurent N, Poncelet E (2015) Ultrasound-guided high-intensity focused ultrasound treatment of breast fibroadenoma—a multicenter experience. J Ther Ultrasound 3:1PubMedCentralPubMedCrossRefGoogle Scholar
  68. Lafon C, Theillere Y, Prat F, Arefiev A, Chapelon J, Cathignol D (2000) Development of an interstitial ultrasound applicator for endoscopic procedures: animal experimentation. Ultrasound Med Biol 26:669–675PubMedCrossRefGoogle Scholar
  69. Lavine O, Langenstrass K, Bowyer C, Fox F, Griffing V, Thaler W (1952) Effects of ultrasonic waves on the refractive media of the eye. Arch Ophthalmol 47:204–209CrossRefGoogle Scholar
  70. Lee BC, Nikoozadeh A, Park KK, Khuri-Yakub BPT (2013) Fabrication of CMUTs with substrate-embedded springs. In: Proceeding IEEE Ultrasonics Symposium, Czech Republic, Prague, pp 1733–1736Google Scholar
  71. Li C, Bian D, Chen W, Zhao C, Yin N, Wang Z (2004) Focused ultrasound therapy of vulvar dystrophies: a feasibility study. Obstet Gynecol 104:915–921PubMedCrossRefGoogle Scholar
  72. Li C, Zhang W, Fan W, Huang J, Zhang F, Wu P (2010) Noninvasive treatment of malignant bone tumors using high‐intensity focused ultrasound. Cancer 116:3934–3942PubMedCrossRefGoogle Scholar
  73. Liberman B, Gianfelice D, Inbar Y, Beck A, Rabin T, Shabshin N, Chander G, Hengst S, Pfeller R, Chechick A, Hanannel A, Dogadkin O, Catane R (2009) Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study. Ann Surg Oncol 16:140–146PubMedCrossRefGoogle Scholar
  74. Lizzi FL, Coleman DJ, Driller J, Franzen LA, Jackobiec FA (1978) Experimental ultrasonically induced lesions in the retina, choroid, and sclera. Invest Ophthalmol 17:350–360Google Scholar
  75. Lynn JG, Zwemer RL, Chick AJ, Miller AE (1942) A new method for the generation and use of focused ultrasound in experimental biology. J Gen Physiol 26:179–192PubMedCentralPubMedCrossRefGoogle Scholar
  76. McDannold N, Tempany CM, Fennessy FM, So MJ, Rybicki FJ, Stewart EA, Hynynen K (2006) Uterine leiomyomas: MR imaging–based thermometry and thermal dosimetry during focused ultrasound thermal ablation 1. Radiol 240:263–272CrossRefGoogle Scholar
  77. Madersbacher S, Schatzl G, Djavan B, Stulnig T, Marberger M (2000) Long-term outcome of transrectal high- intensity focused ultrasound therapy for benign prostatic hyperplasia. Eur Urol 37:687–694PubMedCrossRefGoogle Scholar
  78. Mari JM, Bouchoux G, Dillenseger JL, Gimonet S, Birer A, Garnier C, Brasset L, Ke W, Guey JL, Fleury G (2013) Study of a dual-mode array integrated in a multi-element transducer for imaging and therapy of prostate cancer. IRBM 34:147–158CrossRefGoogle Scholar
  79. Martin E, Jeanmonod D, Morel A, Zadicario E, Werner B (2009) High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol 66:858–861PubMedCrossRefGoogle Scholar
  80. Medel R, Monteith SJ, Elias WJ, Eames M, Snell J, Sheehan JP, Wintermark M, Jolesz FA, Kassell NF (2012) Magnetic resonance guided focused ultrasound surgery: part 2 – a review of current and future applications. Neurosurgery 71:755–763PubMedCentralPubMedCrossRefGoogle Scholar
  81. Melodelima D, Lafon C, Prat F, Theillère Y, Arefiev A, Cathignol D (2003) Transoesophageal ultrasound applicator for sector-based thermal ablation: first in vivo experiments. Ultrasound Med Biol 29:285–291PubMedCentralPubMedCrossRefGoogle Scholar
  82. Melodelima D, Salomir R, Chapelon JY, Theillère Y, Moonen C, Cathignol D (2005) Intraluminal high intensity ultrasound treatment in the esophagus under fast MR temperature mapping: in vivo studies. Magn Reson Med 54:975–982PubMedCrossRefGoogle Scholar
  83. Melodelima D, N’Djin WA, Parmentier H, Chesnais S, Rivoire M, Chapelon JY (2009) Thermal ablation by high-intensity-focused ultrasound using a toroid transducer increases the coagulated volume. Results of animal experiments. Ultrasound Med Biol 35:425–435PubMedCrossRefGoogle Scholar
  84. Orsi F, Arnone P, Chen W, Zhang L (2010) High intensity focused ultrasound ablation: a new therapeutic option for solid tumors. J Cancer Res Ther 6:414–420PubMedCrossRefGoogle Scholar
  85. Owen NR, Chapelon JY, Bouchoux G, Berriet R, Fleury G, Lafon C (2010) Dual-mode transducers for ultrasound imaging and thermal therapy. Ultrasonics 50:216–220PubMedCrossRefGoogle Scholar
  86. Payne A, Vyas U, Todd N, de Bever J, Christensen DA, Parker DL (2011) The effect of electronically steering a phased array ultrasound transducer on nearfield tissue heating. Med Phys 38:4971–4981PubMedCentralPubMedCrossRefGoogle Scholar
  87. Pernot M, Aubry JF, Tanter M, Thomas JL, Fink M (2003) High power transcranial beam steering for ultrasonic brain therapy. Phys Med Biol 48:2577–2589PubMedCentralPubMedCrossRefGoogle Scholar
  88. Prat F, Lafon C, Margonari J, Gorry F, Theillere Y, Chapelon JY, Cathignol D (1999) A high-intensity US probe designed for intraductal tumor destruction: experimental results. Gastrointest Endosc 50:388–392PubMedCrossRefGoogle Scholar
  89. Prat F, Lafon C, Theillere JY, Fritsch J, Choury AD, Lorand I, Cathignol D (2001) Destruction of bile duct carcinoma by intraductal high intensity ultrasound during ERCP. Gastrointest Endosc 53:797–800PubMedCrossRefGoogle Scholar
  90. Quinn SD, Gedroye WM (2015) Thermal ablation treatment of uterine fibroids. Int J Hyperthermia 31:272–279Google Scholar
  91. Rivens IH, Clarke RL, ter Haar GR (1996) Design of focused ultrasound surgery transducers. IEEE Trans Ultrason Ferroelectr Freq Control 43:1023–1031CrossRefGoogle Scholar
  92. Rivens I, Shaw A, Civale J, Morris H (2007) Treatment monitoring and thermometry for therapeutic focused ultrasound. Int J Hyperthermia 23:121–139PubMedCrossRefGoogle Scholar
  93. Rosenberg RS, Purnell E (1967) Effects of ultrasonic radiation on the ciliary body. Am J Ophthalmol 63:403–409PubMedCrossRefGoogle Scholar
  94. Sanghvi NT, Foster RS, Bihrle R, Casey R, Uchida T, Phillips MH, Syrus J, Zaitsev AV, Marich KW, Fry FJ (1999) Noninvasive surgery of prostate tissue by high intensity focused ultrasound: an updated report. Eur J Ultrasound 9:19–29PubMedCrossRefGoogle Scholar
  95. Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10:787–800PubMedCrossRefGoogle Scholar
  96. Shotton KC, Bacon DR, Quilliam RM (1980) A PVDF membrane hydrophone for operation in the range 0.5 MHz to 15 MHz. Ultrasonics 18:123–126PubMedCrossRefGoogle Scholar
  97. Siddiqui K, Chopra R, Vedula S, Sugar L, Haider M, Boyes A, Klotz L (2010) MRI-guided transurethral ultrasound therapy of the prostate gland using real-time thermal mapping: initial studies. Urology 76:1506–1511PubMedCrossRefGoogle Scholar
  98. Silverman RH, Vogelsang B, Rondeau MJ, Coleman DJ (1991) Therapeutic ultrasound for the treatment of glaucoma. Am J Ophthalmol 111:327–337PubMedCrossRefGoogle Scholar
  99. Sommer G, Pauly KB, Holbrook A, Plata J, Daniel B, Bouley D, Diederich C (2013) Applicators for MR-guided ultrasonic ablation of BPH. Invest Radiol 48:387–394PubMedCentralPubMedCrossRefGoogle Scholar
  100. Sullivan LD, McLoughlin MG, Goldenberg LG, Gleave ME, Marich KW (1997) Early experience with high-intensity focused ultrasound for the treatment of benign prostatic hypertrophy. Br J Urol 79:172–176PubMedCrossRefGoogle Scholar
  101. Tanter M, Thomas JL, Fink M (1998) Focusing and steering through absorbing and aberrating layers: application to ultrasonic propagation through the skull. J Acoust Soc Am 103:2403–2410PubMedCrossRefGoogle Scholar
  102. Tanter M, Aubry JF, Gerber J, Thomas JL, Fink M (2001) Optimal focusing by spatio-temporal inverse filter: part I. Basic principles. J Acoust Soc Am 101:37–47CrossRefGoogle Scholar
  103. Tempany CM, Stewart EA, McDannold N, Quade BJ, Jolesz FA, Hynynen K (2003) MR imaging-guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiol 226:897–905CrossRefGoogle Scholar
  104. Thomas JL, Fink M (1996) Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. IEEE Trans Ultrason Ferroelectr Freq Control 43:1122–1129CrossRefGoogle Scholar
  105. Thüroff S, Chaussy CG (2015) Transrectal prostate cancer ablation by robotic High-Intensity Focused Ultrasound (HIFU) at 3 MHz: 18 years clinical experiences. In: Focal therapy of prostate cancer, Springer International Publishing, Switzerland, pp 105–133Google Scholar
  106. Uddin Ahmed H, Cathcart P, Chalasani V, Williams A, McCartan N, Freeman A, Emberton M (2012) Whole‐gland salvage high‐intensity focused ultrasound therapy for localized prostate cancer recurrence after external beam radiation therapy. Cancer 118:3071–3078PubMedCrossRefGoogle Scholar
  107. Urban MW, Chalek C, Haider B, Thomenius KE, Fatemi M, Alizad A (2013) A beamforming study for implementation of vibro-acoustography with a 1.75-D array transducer. IEEE Trans Ultrason Ferroelectr Freq Control 60:535–551PubMedCentralPubMedCrossRefGoogle Scholar
  108. Valerio M, Ahmed HU, Emberton M, Lawrentschuk N, Lazzeri M, Montironi R, Polascik TJ (2014) The role of focal therapy in the management of localised prostate cancer: a systematic review. Eur Urol 66:732–751PubMedCentralPubMedCrossRefGoogle Scholar
  109. Vincenot J, Melodelima D, Chavrier F, Vignot A, Kocot A, Chapelon JY (2013) Electronic beam steering used with a toroidal HIFU transducer substantially increases the coagulated volume. Ultrasound Med Biol 39:1241–1254PubMedCrossRefGoogle Scholar
  110. Wear K, Gammell P, Maruvada S, Liu Y, Harris G (2014) Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity. IEEE Trans Ultrason Ferroelectr Freq Control 61:62–75PubMedCrossRefGoogle Scholar
  111. Wong SH, Kupnik M, Watkins RD, Butts-Pauly K, Khuri-Yakub BT (2010) Capacitive micromachined ultrasonic transducers for therapeutic ultrasound applications. IEEE Trans Biomed Eng 57:114–123PubMedCentralPubMedCrossRefGoogle Scholar
  112. Wharton IP, Rivens IH, ter Haar GR, Gilderdale DJ, Collins DJ, Hand JW, Desouza NM (2007) Design and development of a prototype endocavitary probe for high‐intensity focused ultrasound delivery with integrated magnetic resonance imaging. J Magn Reson Imaging 25:548–556PubMedCrossRefGoogle Scholar
  113. Wu F, Wang ZB, Chen WZ, Wang W, Gui Y, Zhang M, Feng R (2004) Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: an overview. Ultrason Sonochem 11:149–154PubMedCrossRefGoogle Scholar
  114. Wu F, Wang ZB, Chen WZ, Zou JZ, Bai J, Zhu H, Li KQ, Jin CB, Xie FL, Su HB (2005a) Advanced hepatocellular carcinoma: treatment with high-intensity focused ultrasound ablation combined with transcatheter arterial embolization. Radiology 235:659–667PubMedCrossRefGoogle Scholar
  115. Wu F, Wang ZB, Zhu H, Chen WZ, Zou JZ, Bai J, Li KQ, Jin CB, Xie FL, Su HB (2005b) Feasibility of US-guided high-intensity focused ultrasound treatment in patients with advanced pancreatic cancer: initial experience. Radiol 236:1034–1040CrossRefGoogle Scholar
  116. Yamaner FY, Olcum S, Oguz HK, Bozkurt A, Koymen H, Atalar A (2012) High-power CMUTs: design and experimental verification. IEEE Trans Ultrason Ferroelectr Freq Control 59:1276–1284PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Joint Department of PhysicsThe Institute of Cancer ResearchSutton, LondonUK

Personalised recommendations