On the Challenges of Using Social Media for Crisis Management

  • Thomas Delavallade
  • Simon Fossier
  • Claire Laudy
  • Gaëlle Lortal

Abstract

In crisis situations, the challenge of understanding the current situation is tightly linked to the ability to process the variety and the amount of information provided by the multiple sources. In particular, social media can provide additional insight on real-time events, providing that the information that they relay is accurately retrieved, evaluated, and fused. In this chapter, we describe various mechanisms and functions necessary for information fusion and understanding, starting from social media exploration and retrieval, then describing the fusion process and the associated management of information uncertainty, concluding with a description of the methodology and experiments we use to tackle the intrinsic big volume of data and processing required for social media information analysis.

References

  1. Aligne F (2009) Which information and decision support system for the crisis management? In: NATO RTO-MPIST-086Google Scholar
  2. Aligne F, Mattioli J (2010) The role of context for crisis management cycle. In: Burstein F, Brézillon P, Zaslavsky AB (eds) Supporting real time decision-making. Annals of information systems, vol 13. Springer, New York, pp 113–132CrossRefGoogle Scholar
  3. American Red Cross (2010) The case for integrating crisis response with social mediaGoogle Scholar
  4. Belov N, Gerken P (2009) Mixed initiative soft data fusion associate. In: 12th international conference on information fusion, pp 1897–1902Google Scholar
  5. Blondel V, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech: Theory Exp 10:P10008CrossRefGoogle Scholar
  6. Bunke H, Foggia P, Guidobaldi C, Sansone C, Vento M (2002) A comparison of algorithms for maximum common subgraph on randomly connected graphs. In: Lecture notes on computer science, vol 2396. Springer, Heidelberg, pp 123–132Google Scholar
  7. Cameron M, Power R, Robinson B, Yin J (2012) Emergency situation awareness from twitter for crisis management. In: Proceedings of the 21st international conference companion on World Wide Web. ACM, pp 695–698Google Scholar
  8. Capet F, d’Allonnes AR (2014) Information evaluation in the military domain: doctrines, practices and shortcomings. In: Capet P, Delavallade T (eds) Information evaluation. Wiley-ISTE, p 103Google Scholar
  9. Capet P, Delavallade T (2014) Information evaluation. Wiley-ISTEGoogle Scholar
  10. Castillo C, Mendoza M, Poblete B (2010) Twitter under crisis: can you really trust what we RT? InL 1st workshop on social media analytics, SOM’10Google Scholar
  11. Castillo C, Mendoza M, Poblete B (2011) Information credibility on Twitter. In: Proceedings of the 20th international conference on World Wide Web, number 11. ACMGoogle Scholar
  12. Chein M, Mugnier M-L (2008) Graph-based knowledge representation: computational foundations of conceptual graphs. Springer, New YorkGoogle Scholar
  13. Conte D, Foggia P, Vento M (2007) Challenging complexity of maximum common subgraph detection algorithms: a performance analysis of three algorithms on a wide database of graphs. J Graph Algorithms Appl 11(1):99–143CrossRefMathSciNetMATHGoogle Scholar
  14. Coombs WT (2007) Crisis management and communications. IPRGoogle Scholar
  15. Crocq L (2007) Formation et sensibilisation nrbc, haut comit franais pour la dfense civileGoogle Scholar
  16. Crooks A, Croitoru A, Stefanidis A, Radzikowski J (2013) #Earthquake: twitter as a distributed sensor system. T GIS 17(1):124–147CrossRefGoogle Scholar
  17. Date K, Gross GA, Khopkar SS, Nagi R, Sambhoos K (2013) Data association and graph analytical processing of hard and soft intelligence data. In: Proceedings of the 16th international conference on information fusion. IEEE, New York, pp 404–411Google Scholar
  18. Deparis É (2013) Création de nouvelles connaissances décisionnelles pour une organisation via ses ressources sociales et documentaires. Ph.D. thesis, Université de Technologie de Compiégne, CompiégneGoogle Scholar
  19. Flizikowski A, Holubowicz W, Stachowicz A, Hokkanen L, Kurki T, Paivinen N, Delavallade T (2014) Social media in crisis management the iSAR+ project survey. In: Hiltz S, Pfaff M, Plotnick L, Shih P, Tapia A (eds) Proceedings of the international ISCRAM conferenceGoogle Scholar
  20. Goujon B (2009) Uncertainty detection for information extraction. In: Proceedings of the international conference on recent advances in natural language processing, pp 118–122Google Scholar
  21. Gouttas C, de Maupeou S, Mabiala Y, Delavallade T, Huyot B (2013) Visual analytics innovative services for cyber-security. In: NATO symposium on visual analytics, IST-116Google Scholar
  22. Gross G, Nagi R, Sambhoos K, Schlegel D, Shapiro S, Tauer G (2012) Towards hard+soft data fusion: processing architecture and implementation for the joint fusion and analysis of hard and soft intelligence data. In: 15th international conference on information fusion, pp 955–962Google Scholar
  23. Huang C-M, Chan E, Hyder AA (2010) Web 2.0 and internet social networking: a new tool for disaster management? Lessons from taiwan. BMC Med Inf Dec MakGoogle Scholar
  24. Imran M, Castillo C, Lucas J, Meier P, Rogstadius J (2014) Coordinating human and machine intelligence to classify microblog communications in crises. In: Hiltz S, Pfaff M, Plotnick L, Shih P, Tapia A (eds) Proceedings of the international ISCRAM conferenceGoogle Scholar
  25. Initive HH (2011) Disaster relief 2.0: the future of information sharing in humanitarian emergencies. Technical report, UN Foundation and Vodafone Foundation Technology PartnershipGoogle Scholar
  26. Kohler H, Lambert DA, Richter J, Burgess G, Cawley T (2013) Implementing soft fusion. In: Proceedings of the 16th international conference on information fusion, FUSION 2013, Istanbul. IEEE, New York, pp 389–396Google Scholar
  27. Kumar S, Barbier G, Abbasi M, Liu H (2011) Tweettracker: an analysis tool for humanitarian and disaster relief. In: International conference on weblogs and social media (ICWSM), pp 1–1Google Scholar
  28. Laudy C (2010) Introducing semantic knowledge in high level information fusion. Ph.D. thesis, Paris 6 UniversityGoogle Scholar
  29. Laudy C (2011) Semantic knowledge representations for soft data fusion — efficient decision support systems - practice and challenges from current to future. Chiang Jao PublisherGoogle Scholar
  30. Laudy C, Ganascia J-G (2009) Using maximal join for information fusion. In: Graph structures for knowledge representation and reasoning (GKR 2009) collocated with the twenty-first international joint conference on artificial intelligence (IJCAI-09)Google Scholar
  31. Lerbinger O (1997) The crisis manager: facing risk and responsibility/Otto Lerbinger. Erlbaum, MahwahGoogle Scholar
  32. Lesot M-J, Delavallade T, Pichon F, Akdag H, Bouchon-Meunier B, Capet P (2011) Proposition of a semi-automatic possibilistic information scoring process. In: 7th conference of the European Society for Fuzzy Logic and Technology, pp 949–956Google Scholar
  33. Lesot M, Pichon F, Delavallade T (2014) Quantitative information evaluation: modeling and experimental evaluation. In: Capet P, Delavallade T (eds) Information evaluation. Wiley-ISTE, p 187Google Scholar
  34. Liu Y, Jiang X, Chen H, Ma J, Zhang X (2009) MapReduce-based pattern finding algorithm applied in motif detection for prescription compatibility network. In: Advanced parallel processing technologies, vol 5737. Springer, Berlin/Heidelberg, pp 341–355Google Scholar
  35. Llinas J, Nagi R, Hall D, Lavery J (2010) A multi-disciplinary university research initiative in hard and soft information fusion: overview, research strategies and initial results. In: 13th international conference on information fusion, pp 1–7Google Scholar
  36. MacEachren A, Robinson A, Jaiswal A, Pezanowski S, Savelyev A, Blanford J, Mitra P (2011) Geo-Twitter analytics: applications in crisis management. In: Proceedings of 25th international cartographic conference, p 1Google Scholar
  37. McKay BD, Piperno A (2014) Practical graph isomorphism, II. J Symb Comput 60:94–112CrossRefMathSciNetMATHGoogle Scholar
  38. Meier P (2013) Two signs of things to come in disaster response: learning from typhoon Yolanda. Opening Keynote Address at CrisisMappers 2013 http://www.engagingcities.com/article/two-signs-things-come-disaster-response-learning-typhoon-yolanda
  39. NATO (2003) STANAG2511. Intelligence ReportsGoogle Scholar
  40. Ndiaye SN, Solnon C (2011) CP Models for Maximum Common Subgraph Problems. In: 17th international conference on principles and practice of constraint programming (CP). Lecture notes in computer science. Springer, New York, pp 637–644Google Scholar
  41. Peary B, Shaw R, Takeuchi Y (2012) Utilization of social media in the East Japan earthquake and tsunami and its effectiveness. J Nat Disaster Sci 34(1):3–18CrossRefGoogle Scholar
  42. Pichon F, Dubois D, Denoeux T (2012) Relevance and truthfulness in information correction and fusion. Int J Approx Reason 53(2):159–175CrossRefMathSciNetMATHGoogle Scholar
  43. Pichon F, Labreuche C, Duqueroie B, Delavallade T (2014) Multidimensional approach to reliability evaluation of information sources. In: Capet P, Delavallade T (eds) Information evaluation. Wiley-ISTEGoogle Scholar
  44. Pine JA, Lemoine J, Benhadda H (2005) Un nouvel outil de classification non supervisée de documents pour la découverte de connaissances et la détection de signaux faibles: Rares text. Journée sur les systèmes d’information élaboréeGoogle Scholar
  45. Plantenga T (2013) Inexact subgraph isomorphism in MapReduce. J Parallel Distrib Comput 73:164–175CrossRefGoogle Scholar
  46. Raymond J, Willett P (2002) Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J Comput Aided Mol Des 16(7):521–533CrossRefGoogle Scholar
  47. Roth F, Giroux J, Herzog M (2013) Crisis mapping in Switzerland: a stakeholder analysis. 3rg special report, Risk and Resilience Research Group, Center for Security Studies (CSS), ETHGoogle Scholar
  48. Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of the 19th international conference on World Wide Web, pp 851–860Google Scholar
  49. Shafer G (1976) A mathematical theory of evidence. Princeton University Press, PrincetonMATHGoogle Scholar
  50. Singh VK, Gao M, Jain R (2010) Situation detection and control using spatio-temporal analysis of microblogs. In: Rappa M, Jones P, Freire J, Chakrabarti S (eds) Proceedings of the 19th international conference on World Wide Web. ACM, pp 1181–1182Google Scholar
  51. Smets P (1993) Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem. Int J Approx Reason 9(1):633–664CrossRefMathSciNetGoogle Scholar
  52. Smets P, Kennes R (1994) The transferable belief model. Artif Intell 66(2):191–234CrossRefMathSciNetMATHGoogle Scholar
  53. Solnon C (2010) Alldifferent-based filtering for subgraph isomorphism. Artif Intell 174(12–13):850–864CrossRefMathSciNetMATHGoogle Scholar
  54. Sowa J-F (1984) Conceptual structures: information processing in mind and machine. Addison-Wesley, ReadingMATHGoogle Scholar
  55. Starbird K, Palen L (2010) Pass it on: retweeting in mass emergency. In: Proceedings of the 7th international ISCRAM conferenceGoogle Scholar
  56. Stollberg B, de Groeve T (2012) The use of social media within the global disaster alert and coordination system (gdacs). In: Proceedings of the 21st international conference companion on World Wide Web. ACM, pp 703–706Google Scholar
  57. Ullmann JR (1976) An algorithm for subgraph isomorphism. J ACM 23(1):31–42CrossRefMathSciNetGoogle Scholar
  58. Vieweg S, Hughes AL, Starbird K, Palen L (2010) Microblogging during two natural hazards events: what Twitter may contribute to situational awareness. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 1079–1088Google Scholar
  59. White T (2009) Hadoop: the definitive guide, 1st edn. O’Reilly MediaGoogle Scholar
  60. Yager R (1984) Approximate reasoning as a basis for rule-based expert systems. IEEE Trans Syst Man Cybern 14:636–643CrossRefMathSciNetMATHGoogle Scholar
  61. San Su Y, Wardell C III, Thorkildsen Z (2013) Social media in the emergency management field. Technical report, National Emergency Management Association (NEMA), CNA Analysis and SolutionsGoogle Scholar
  62. Zhao Z, Wang G, Butt AR, Khan M, Anil Kumar VS, Marathe MV (2012) SAHAD: subgraph analysis in massive networks using Hadoop. In: Proceedings of the 2012 IEEE 26th international parallel and distributed processing symposium. IPDPS ’12. IEEE Computer Society, Washington, DC, pp 390–401. doi:10.1109/IPDPS.2012.44. http://dx.doi.org/10.1109/IPDPS.2012.44. ISBN: 978-0-7695-4675-9

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Thomas Delavallade
    • 1
  • Simon Fossier
    • 2
  • Claire Laudy
    • 2
  • Gaëlle Lortal
    • 2
  1. 1.ThalesGennevilliersFrance
  2. 2.ThalesPalaiseauFrance

Personalised recommendations