Skip to main content

Fusion Trust Service Assessment for Crisis Management Environments

  • Chapter
Fusion Methodologies in Crisis Management
  • 978 Accesses

Abstract

Future crisis management systems need resilient and trustworthy infrastructures to quickly develop reliable applications and processes, apply fusion techniques, and ensure end-to-end security, trust, and privacy. Due to the multiplicity and diversity of involved actors, volumes of data, and heterogeneity of shared information; crisis management systems tend to be highly vulnerable and subject to unforeseen incidents. As a result, the dependability of crisis management systems can be at risk. This chapter presents a cloud-based resilient and trustworthy infrastructure (known as rDaaS) to quickly develop secure crisis management systems. The rDaaS integrates the Dynamic Data-Driven Application Systems (DDDAS) paradigm into a service-oriented architecture over cloud technology and provides a set of resilient DDDAS-As-A Service (rDaaS) components to build secure and trusted adaptable crisis processes. One service presented includes the fusion of information from human observers and surveillance systems to assess the credibility (trust) of a crisis alert. The fusion trust service within the rDaaS also ensures resilience and security by obfuscating the execution environment and applying Behavior Software Encryption and Moving Technique Defense over the users, machines, and communication network. A simulation environment for a nuclear plant crisis management case study is illustrated to build resilient and trusted crisis response processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • 16 September 2009. [Accessed January 2013]. http://www.cyber.st.dhs.gov/docs/National_Cyber_Leap_Year_Summit_2009_Co-Chairs_Report.pdf

  • Abbasy M, Shanmugam B (2011) Enabling data hiding for resource sharing in cloud computing environments based on DNA sequences. In IEEE World Congress

    Google Scholar 

  • Abielmona R, Falcon R, Vachon P, Groza V (2014) Vessel tracking and anomaly detection using level 0/1 and high-level information fusion techniques. Workshop on soft computing applications

    Google Scholar 

  • Aggarwal CC, Yu PS (2001) Outlier detection for high dimensional data. In SIGMOD Conference

    Google Scholar 

  • Satam P, Alipour H, Al-Nashif Y, Hariri S (2015) DNS-IDS: Securing DNS in the Cloud Era, International Conference on Cloud and Autonomic Computing (ICCAC), pp 296--301

    Google Scholar 

  • Alipour H, Al-Nashif YB, Satma P, Hariri S (2015) Wireless Anomaly Detection Based on IEEE 802.11 Behavior analysis. IEEE Transactions on Information Forensics and Security, 10(10), 2158--2170

    Google Scholar 

  • Al-Nashif YB, Kumar A, Hariri S, Luo Y, Szidarovszky F, Qu G (2008) Multi-level intrusion detection system (ML-IDS). ICAC, pp 131–140

    Google Scholar 

  • Anderson D, Lunt TF, Javitz H, Tamaru A, Valdes A (1995) Detecting unusual program behavior using the statistical component of the next-generation intrusion detection expert system nides. Technical Report SRI-CSL-95-06, Computer Science Laboratory, SRI International

    Google Scholar 

  • Ao Z, Scholz J, Oxehham M (2014) A Scientific Inquiry fusion theory for high-level information fusion. International conference on information fusion

    Google Scholar 

  • Aved AJ, Blasch E (2015) Multi-INT query language for DDDAS designs. Proc Comput Sci 51:2518–2532

    Article  Google Scholar 

  • Avizienis A (1985) The N-version approach to fault tolerant software. IEEE Trans Softw Eng SE-11(12):1491–1501

    Article  Google Scholar 

  • Barrantes E, Ackley D, Forrest S et al (2003) Intrusion detection: randomized instruction set emulation to disrupt binary code injection attacks. ACM conference on computer and communications security

    Google Scholar 

  • Barthe-Delanoë A-M et al (2013) A platform for event-driven agility of processes: a delivery context use-case. Collaborative systems for reindustrialization. Springer, Berlin, pp 681–690

    Google Scholar 

  • Bhadauria R, Sanyal S (2012) Survey on security issues in cloud computing and associated mitigation techniques. Int J Comput Appl 47(18):47–66

    Google Scholar 

  • Blasch E (2003) Situation, impact, and user refinement. Proc SPIE 5096

    Google Scholar 

  • Blasch E (2006) Level 5 (User Refinement) issues supporting Information Fusion Management. International conference on information fusion

    Google Scholar 

  • Blasch E (2008) Chapter 19: Introduction to level 5 fusion: the role of the user. In: Liggins ME, Hall D, Llinas J (eds) Handbook of multisensor data fusion, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Blasch E (2014) Context aided sensor and human-based information fusion. IEEE National Aerospace and Electronics (NAECON)

    Google Scholar 

  • Blasch E (2014) Trust metrics in information fusion. Proc SPIE 9091

    Google Scholar 

  • Blasch E (2015) One decade of the Data Fusion Information Group (DFIG) model. Proc SPIE 9499

    Google Scholar 

  • Blasch E, Israel S (2015) Situation/threat context assessment. International conference on information fusion

    Google Scholar 

  • Blasch EP, Plano SB (2002) JDL Level 5 Fusion model ‘user refinement’ issues and applications in group tracking. Proc SPIE 4729

    Google Scholar 

  • Blasch E, Plano S (2005) DFIG Level 5 (User Refinement) issues supporting Situational Assessment Reasoning. International conference on information fusion

    Google Scholar 

  • Blasch E, Pribilski M, Daughtery B, Roscoe B, Gunsett J (2004) Fusion metrics for dynamic situation analysis. Proc SPIE 5429

    Google Scholar 

  • Blasch E, Kadar I, Salerno J, Kokar MM, Das S, Powell GM, Corkill DD, Ruspini EH (2006) Issues and challenges in situation assessment (Level 2 Fusion). J Adv Inform Fusion 1(2):122–139

    Google Scholar 

  • Blasch E, Kadar I, Hintz K, Biermann J, Chong C-Y, Salerno J, Das S (2008) Resource management coordination with level 2/3 fusion issues and challenges. IEEE Aerosp Electron Syst Mag 23(3):32–46

    Article  Google Scholar 

  • Blasch E, Valin P, Bosse E, Nilsson M, Van Laere J, Shahbazian E (2009) Implication of culture: user roles in information fusion for enhanced situational understanding. International conference on information fusion

    Google Scholar 

  • Blasch E, Dorion É, Valin P, Bossé E, Roy J (2010) Ontology alignment in geographical hard-soft information fusion systems. International conference on information fusion

    Google Scholar 

  • Blasch EP, Valin P, Bossé E (2010) Measures of effectiveness for high-level fusion. International conference on information fusion

    Google Scholar 

  • Blasch E, Breton R, Valin P, Bosse E (2011) User information fusion decision making analysis with the C-OODA model. International conference on information fusion

    Google Scholar 

  • Blasch E, Breton R, Valin P (2011) Using the C-OODA model for CIMIC analysis. IEEE National Aerospace and Electronics Conference

    Google Scholar 

  • Blasch E, Deignan PB Jr, Dockstader SL, Pellechia M et al (2011) Contemporary concerns in geographical/geospatial information systems (GIS) processing. IEEE National Aerospace and Electronics Conference (NAECON)

    Google Scholar 

  • Blasch E, Dezert J, Valin P (2011) DSMT Applied to Seismic and Acoustic Sensor Fusion. Proceedings of the IEEE National Aerospace Electronics Conference (NAECON)

    Google Scholar 

  • Blasch EP, Bosse E, Lambert DA (2012a) High-level information fusion management and systems design. Artech House, Norwood, MA

    Google Scholar 

  • Blasch E, Banas C et al (2012) Pattern Activity Clustering and Evaluation (PACE). Proc SPIE 8402

    Google Scholar 

  • Blasch E, Lambert DA, Valin P, Kokar MM, Llinas J, Das S et al (2012c) High level information fusion (HLIF) survey of models, issues, and grand challenges. IEEE Aerosp Electron Syst Mag 27(9):4–20

    Article  Google Scholar 

  • Blasch E, Valin P, Jousselme A-L, Lambert DA, Bossé E (2012) Top ten trends in high-level information fusion. International conference on information fusion

    Google Scholar 

  • Blasch E, Chen Y, Chen G, Shen D, Kohler R (2013a) Information fusion in a cloud-enabled environment. In: Han K, Choi B-Y, Song S (eds) High performance cloud auditing and applications. Springer, New York, pp 91--115

    Google Scholar 

  • Blasch E, Seetharaman G, Reinhardt K (2013b) Dynamic data driven applications system concept for information fusion. Procedia Computer Science 18:1999–2007

    Article  Google Scholar 

  • Blasch E, Dezert J, Pannetier B (2013) Overview of Dempster-Shafer and belief function tracking methods. Proc SPIE 8745

    Google Scholar 

  • Blasch E, Steinberg A, Das S, Llinas J, Chong C-Y, Kessler O, Waltz E, White F (2013) Revisiting the JDL model for information Exploitation. International conference on information fusion

    Google Scholar 

  • Blasch E, Laskey KB, Joussselme A-L, Dragos V, Costa PCG, Dezert J (2013) URREF reliability versus credibility in information fusion (STANAG 2511). International conference on information fusion

    Google Scholar 

  • Blasch E, Al-Nashif Y, Hariri S (2014) Static versus Dynamic Data Information Fusion analysis using DDDAS for Cyber Trust. International conference on computational science, Procedia Computer Science

    Google Scholar 

  • Blasch E, Nagy J, Aved A, Pottenger WM, Schneider M, Hammoud R, Jones EK, Basharat A et al (2014) Context aided video-to-text information fusion. International conference on information fusion

    Google Scholar 

  • Blasch E, Jøsang A, Dezert J, Costa PC, Laskey KB, Jousselme A-L (2014) URREF self-confidence in Information Fusion Trust. International conference on information fusion

    Google Scholar 

  • Breunig MM, Kriegel H, Ng RT, Sander J (2000) LOF: identifying density-based local outliers. Proceedings of ACM SIGMOD International Conference on Management of Data, pp 93–104

    Google Scholar 

  • Cadar C, Akritidis P, Costa, M, Martin J-P, Castro M, (2008) Data randomization. Technical Report MSR-TR-2008-120, Microsoft Research

    Google Scholar 

  • Chen G, Shen D, Kwan C, Cruz JB et al (2007a) Game theoretic approach to threat prediction and situation awareness. J Adv Inform Fusion 2(1):1–14

    Google Scholar 

  • Chen G, Tian Z, Shen D et al (2007) A novel framework for command and control of networked sensor systems. Proc SPIE 6578

    Google Scholar 

  • Chen D, Chen G, Cruz J, Haynes L et al (2007) A Markov game theoretic data fusion approach for cyber situational awareness. Proc SPIE 6571

    Google Scholar 

  • Cheng E, Ma L, Blaisse A et al (2014) Efficient feature extraction from wide area motion imagery by MapReduce in Hadoop. Proc SPIE 9089

    Google Scholar 

  • Costa PC, Laskey KB et al (2012) Towards unbiased evaluation of uncertainty reasoning: the URREF ontology. International conference on information fusion

    Google Scholar 

  • Daniel M (2006) Generalization of the classic combination rules to DSm hyper-power sets. Inform Security 20

    Google Scholar 

  • Denning DE (1987) An intrusion-detection model. IEEE Trans Softw Eng 13(2):222–232

    Article  Google Scholar 

  • Dezert J (2002) Foundations for a new theory of plausible and paradoxical reasoning. Inform Security, An Int’l Journal, ed. by Prof. Tzv. Semerdjiev, vol 9

    Google Scholar 

  • Dezert J (2012) Non-Bayesian reasoning for information fusion – a tribute to Lofti Zadeh. Submitted to J Adv Inform Fusion

    Google Scholar 

  • Dezert J, Smarandache F (2003) On the generation of hyper-powersets for the DSmT. International conference on information fusion

    Google Scholar 

  • Dezert J, Smarandache F (2009) Advances and applications of DSmT for information fusion (Collected works), vol 1–3. American Research Press, Rehoboth

    MATH  Google Scholar 

  • Dijkman RM, Dumas M, Ouyang C (2008) Semantics and analysis of business process models in BPMN. Inf Softw Technol 50(12):1281–1294

    Article  Google Scholar 

  • Djiknavorian P, Grenier D, Valin P (2010) Approximation in DSm theory for fusing ESM reports. International workshop on belief functions

    Google Scholar 

  • Dsouza G, Rodríguez G, Al-Nashif YB, Hariri S (2013) Building resilient cloud services using DDDAS and moving target defence. Int J Cloud Comput 2(2/3):171–190

    Article  Google Scholar 

  • Dunlop M, Groat S, Urbanski W, Marchany R, Tront J (2011) MT6D:a moving target IPv6 defense. In IEEE military communications conference (MILCOM)

    Google Scholar 

  • Endsley MR (1988) Design and evaluation for situation awareness enhancement. Proc Hum Fact Ergon Soc Annu Meet 32:97–101

    Google Scholar 

  • Ertöz L, Eilertson E, Lazarevic A, Tan P, Kumar V, Srivastava J, Dokas P (2004) Minds - Minnesota intrusion detection system. In: Data mining - next generation challenges and future directions. MIT Press, Cambridge

    Google Scholar 

  • Eskin E, Arnold A, Prerau M, Portnoy L, Stolfo S (2002) A geometric framework for unsupervised anomaly detection: detecting intrusions in unlabeled data. In: Proceedings of applications of data mining in computer security. Kluwer Academics, Boston, pp 78–100

    Google Scholar 

  • Evans D, Nguyen-Tuong A, Knight J (2011) Effectiveness of moving target defenses. In: Advances in information security. Springer, New York, pp 29–39

    Google Scholar 

  • Feng J, Chen Y, Summerville D, Ku W, Su Z (2011) Enhancing cloud storage security against roll-back attacks with a new fair multi-party non-repudiation protocol. In Consumer communications and networking conference

    Google Scholar 

  • Florea MC, Bosse E (2009) Crisis management using Dempster-Shafer theory: similarity measures to characterize source’s reliability. RTO-MP-IST-086

    Google Scholar 

  • Florea MC, Dezert J, Valin P, Smarandache F, Jousselme A-L (2006) Adaptive combination rule and proportional conflict redistribution rule for information fusion. COGIS '06 conference

    Google Scholar 

  • Ge L, Yu W, Shen D, Chen G, Pham K et al (2014) Toward effectiveness and agility of network security situational awareness using moving target defense (MTD). Proc SPIE 9085

    Google Scholar 

  • Ge L, Zhang H, Xu G, Yu W et al (2015) Towards MapReduce based machine learning techniques for processing massive network threat monitoring data. In: Networking for big data. CRC, Boca Raton

    Google Scholar 

  • Goodin D (2009) Webhost Hack Wipes Out Data for 100,000 Sites. 8 June 2009 [Online]. http://www.theregister.co.uk/2009/06/08/webhost_attack/

  • Gruniger M, Obrst L (eds) (2014) Semantic Web and big data meets applied ontology. Ontology Summit

    Google Scholar 

  • Javitz HS, Valdes A (1994) The nides statistical component: description and justification. Technical Report, SRI International Menlo Park, California

    Google Scholar 

  • Jeffrey D, Sanjay G (2008) MapReduce: simplified data processing on large clusters. In Communications of the ACM

    Google Scholar 

  • Josang A, Daniel M (2006) Strategies for combining conflict dogmatic beliefs. International conference on information fusion

    Google Scholar 

  • Kankanamge RPR (2010) Information systems for supporting fire emergency. PhD Thesis, Loughborough University

    Google Scholar 

  • Kaufman L (2009) Data security in the world of cloud computing. IEEE Security Privacy J 7(4):61–64

    Article  Google Scholar 

  • Keromytis A, Sethumadhavan GRS, Stolfo S, Junfeng Y, Benameur A, Dacier M, Elder M, Kienzle D, Stavrou A (2012) The MEERKATS Cloud Security Architecture. In 32nd international conference on distributed computing systems workshops

    Google Scholar 

  • Kim K (1998) ROAFTS: a middleware architecture for real-time object-oriented adaptive fault tolerance support. In IEEE CS 1998 High-Assurance Systems Engineering (HASE) Symposium Washington, DC

    Google Scholar 

  • Kim K, Welch H (1989) Distributed execution of recovery blocks: an approach for uniform treatment of hardware and software faults in real-time applications. IEEE Trans Comput 38(5):626–636

    Article  Google Scholar 

  • Knorr EM, Ng RT (1998) Algorithms for mining distance-based outliers in large datasets. In Proceedings of the 24th international conference on very large data bases, VLDB, pp 392–403, 24–27

    Google Scholar 

  • Latif-Shabgahi S (2011) An integrated voting algorithm for fault tolerant systems. In Proceedings of the international conference on software and computer applications (IPCSIT), vol 9

    Google Scholar 

  • Lee ZH, Choir JS, Elmasri R (2010) A static evidential network for context reasoning in home-based care. IEEE Trans Syst Man Cyber Part A Syst Hum 40(6):1232–1243

    Article  Google Scholar 

  • Li W, Badr Y, Biennier F (2013) Service farming: an ad-hoc and QoS-aware web service composition approach. Dans SAC 2013, Coimbra, Portugal, pp 750–756

    Google Scholar 

  • Liu Z, Blasch E, Xue Z, Langaniere R, Wu W (2012) Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative survey. IEEE Trans Pattern Anal Mach Intell 34(1):94–109

    Article  Google Scholar 

  • Liu B, Blasch E, Chen Y, Aved AJ et al (2014) Information fusion in a cloud computing era: a systems-level perspective. IEEE Aerosp Electron Syst Mag 29(10):16–24

    Article  Google Scholar 

  • Lunt TF, Jagannathan R (1988) A prototype real-time intrusion-detection expert system. In Proceedings of the IEEE symposium on security and privacy, pp 18–21

    Google Scholar 

  • Luo D, Wang J (2010) CC-VIT: virtualization intrusion tolerance based on cloud computing. In 2nd International conference on information engineering and computer science

    Google Scholar 

  • Marhsall P (2014) Agencies push Geospatial data to the rank and file. GCN, Nov/Dec 2014

    Google Scholar 

  • Martin A, Osswald C, Dezert J, Smarandache F (2008) General combination rules for qualitative and quantitative beliefs. J Adv Inform Fusion 3(2):67–89

    Google Scholar 

  • Mendoza-Schrock O, Patrick JA et al (2009) Video image registration evaluation for a layered sensing environment. Proceedings of the IEEE National Aerospace Electronics Conference (NAECON)

    Google Scholar 

  • Modi C, Patel D, Borisaniya B, Patel A, Rajarajan M (2013) A survey on security issues and solutions at different layers of Cloud computing. J Supercomput 63:561–592

    Article  Google Scholar 

  • Narain S (2013) Moving target defense with configuration space randomization. https://www.ncsi.com/nsatc11/presentations/thursday/emerging_technologies/narain.pdf. Accessed 30 Jan 2013

  • NIST (2010) Recommended security controls for federal information systems and organizations. NIST Special Publication 800-53, Revision 3

    Google Scholar 

  • PaX Homepage 2000 [Online]. http://pax.grsecurity.net/. Accessed Oct 2012

  • Paxson V (1999) Bro: a system for detecting network intruders in real-time. Comput Networks (Amsterdam, Netherlands: 1999) 31(23–24):2435–2463

    Google Scholar 

  • Pék G, Butty´an L, Bencsáth B (2013) A survey of security issues in hardware virtualization. ACM Computer Surv 45(3), Article 40 (July 2013), 34 pages

    Google Scholar 

  • Peng L, Lipinski D, Mohseni K (2014) Dynamic Data Driven Application System for plume estimation using UAVs. J Intell Robot Syst 74:421–436

    Article  Google Scholar 

  • Pipkin DL (2000) Information security: protecting the global enterprise. Prentice-Hall, Inc., Upper Saddle River, NJ

    Google Scholar 

  • Porras PA, Neumann PG (1997) Emerald: event monitoring enabling responses to anomalous live disturbances. In Proceedings of the National Information Systems Security Conference, pp. 353–365, 1997

    Google Scholar 

  • Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large datasets. Proceedings of the ACM SIDMOD international conference on management of data, pp 427–438

    Google Scholar 

  • Roesch M (1999) Snort - lightweight intrusion detection for networks. 13th Systems Administration Conference - LISA

    Google Scholar 

  • Rosenblum M, Garfinkel T (2005) When virtual is harder than real: security challenges in virtual machine based computing environments. In 10th conference on hot topics in operating systems, Berkeley

    Google Scholar 

  • Scarfone K, Mell P (2007) Guide to Intrusion Detection and Prevention Systems (IDPS). Computer Security Resource Center (National Institute of Standards and Technology) (800–94). Retrieved 1 Jan 2010

    Google Scholar 

  • Schmidt M, Baumgartner L, Graubner P, Bock D, Freisleben B (2011) Malware detection and Kernel Rootkit prevention in cloud computing environments. In 19th Euromicro international conference on parallel, distributed and network-based processing

    Google Scholar 

  • Schneider J, Romanowski CJ, Stein K (2013) Decision making to support local emergency 960 preparation, response, and recovery, IEEE International Conference on Technologies for Homeland Security, pp 498--503

    Google Scholar 

  • Scott PD (2007) Information fusion for natural and man-made disasters. AFOSR Grant F49620-01-1-0371, Jan 2007

    Google Scholar 

  • Security as a Service. Cloud Security Alliance, [Online]. https://cloudsecurityalliance.org/research/secaas/. Accessed Jan 2013

  • Sekar R, Gupta A, Frullo J, Shanbhag T, Tiwari A, Yang H, Zhou S (2002) Specification-based anomaly detection: a new approach for detecting network intrusions. In CCS’02: Proceedings of the 9th ACM conference on computer and communications security, pp 265–274, New York, NY, USA

    Google Scholar 

  • Sequeira K, Zaki M (2002) Admit: anomaly-based data mining for intrusions. Proceedings of ACM SIGKDD international conference on Knowledge discovery and data mining (KDD), pp 386–395

    Google Scholar 

  • Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  • Shon T, Moon J (2007) A hybrid machine learning approach to network anomaly detection. Inform Sci 177(18):3799–3821

    Article  Google Scholar 

  • Siddiqui MS, Verma D (2011) Cross site request forgery: a common web application weakness. IEEE International Conference on Communication Software and Networks (ICCSN), pp 538–543

    Google Scholar 

  • Smaradache F, Dezert J (2005) Information fusion based on new proportional conflict redistribution rules. International conference on information fusion

    Google Scholar 

  • Smets P (2005) Analyzing the combination of conflicting belief functions. International conference on information fusion

    Google Scholar 

  • Staniford S, Hoagland JA, McAlerney JM (2002) Practical automated detection of stealthy portscans. J Comput Security 10(1–2):105–136

    Google Scholar 

  • Steinberg AN, Bowman CL, Haith G et al (2014) Adaptive context assessment and context management. International conference on information fusion

    Google Scholar 

  • Subashini VS (2011) A survey on security issues in service delivery models of cloud computing. J Netw Comput Appl 34:1–11

    Article  Google Scholar 

  • Toy WN (1987) Fault-Tolerant Computing, Advances in Computers, Vol. 26, Academic Press, 201--279

    Google Scholar 

  • Tunc C, Fargo F, Al-Nashif Y, Hariri S, Hughes J (2014) Autonomic Resilient Cloud Management (ARCM). ACM international conference on cloud and autonomic computing (CAC '14)

    Google Scholar 

  • Tyrrell A (1996) Recovery blocks and algorithm based fault tolerance. In 22nd EUROMICRO conference

    Google Scholar 

  • Vallee G, Engelmann C, Tikotekar A, Naughton T, Charoenpornwattana K, Leangsuksun C, Scott S (2008) A framework for proactive fault tolerance. International conference on availability, reliability and security

    Google Scholar 

  • Verissimo P, Bessani A, Pasin M (2012) The TClouds architecture: open and resilient cloud-of-clouds computing. In IEEE/IFIP 42nd international conference on dependable systems and networks workshops

    Google Scholar 

  • Viswanathan RP, Al-Nashif Y, Hariri S (2011) Application attack detection system (AADS): an anomaly based behavior analysis approach. ACS/IEEE international conference on computer systems and applications

    Google Scholar 

  • Wen Y (2011) Heterogeneous sensor fusion in sensor networks: a language-theoretic approach. PhD Dissertation, Penn State University

    Google Scholar 

  • Yamanishi K, Takeuchi J, Williams GJ, Milne P (2000) On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. In Knowledge discovery and data mining, pp 320–324

    Google Scholar 

  • Yang C et al (2008) Fusion of tracks with road constraints. J Adv Inform Fusion 3(1):14–32

    Google Scholar 

  • Yang C, Nguyen T et al (2014) Mobile positioning with fused mixed signals of opportunity. IEEE Aerosp Electron Syst Mag 29(4):34–46

    Article  MathSciNet  Google Scholar 

  • Ye N (2004) A markov chain model of temporal behavior for anomaly detection. In Proceedings of IEEE 5th annual IEEE information assurance workshop

    Google Scholar 

  • Ye N, Chen Q (2001) An anomaly detection technique based on a chi-square statistic for detecting intrusions into in-formation systems. Qual Reliab Eng Int 17:105–112

    Article  Google Scholar 

  • Yen J (1986) A reasoning model based on the extended Dempster Shafer theory. National conference on artificial intelligence

    Google Scholar 

  • Zeng H (2013) Research on developing an attack and defense lab environment for cross site scripting education in higher vocational colleges. International Conference on Computational and Information Sciences

    Google Scholar 

  • Zhuang R, Zhang S, DeLoach SA, Ou X, Singhal A (2012) Simulation-based approaches to studying effectiveness of moving-target network defense. In National symposium on moving target research

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by the Air Force Office of Scientific Research (AFOSR) Dynamic Data-Driven Application Systems (DDDAS), AFOSR FA95550-12-1-0241, National Science Foundation NSF IIP-0758579, NCS-0855087, and IIP-1127873, and Thomson Reuters in the framework of the Partner University Fund (PUF) project (PUF is a program of the French Embassy in the USA and the FACE Foundation and is supported by American donors and the French government).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Blasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blasch, E., Badr, Y., Hariri, S., Al-Nashif, Y. (2016). Fusion Trust Service Assessment for Crisis Management Environments. In: Rogova, G., Scott, P. (eds) Fusion Methodologies in Crisis Management. Springer, Cham. https://doi.org/10.1007/978-3-319-22527-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22527-2_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22526-5

  • Online ISBN: 978-3-319-22527-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics