Network Methods and Plan Recognition for Fusion in Crisis Management

Abstract

Building and updating a situational picture of the scenario under consideration is the goal of the Situation Assessment (SA) Information Fusion (IF) process. The scenario generally involves multiple entities and actors where possibly only a few under direct control of the decision maker. SA aims at explaining the observed events (mainly) by establishing the entities and actors involved, inferring their goals, understanding the relations existing (whether permanently or temporarily) between them, the surrounding environment, and past and present events. It is therefore apparent how the SA process inherently hinges on understanding and reasoning about relations. SA is a necessary preparatory step to the following phase of Impact Assessment (IA) where the decision maker is interested in estimating the evolution of the situation and the possible outcomes, dangers and threats. SA and IA processes are particularly complex and critical for large-scale scenarios with nearly chaotic dynamics such as those affected by natural or man-made disasters. This chapter will discuss recent developments in information fusion methods for representing and reasoning about relational information and knowledge for event detection in the context of crisis management. In particular, network methods will be analysed as a means for representing and reasoning about relational knowledge with the purpose of detecting complex events or discovering the causes of observed evidence.

References

  1. Allouche MK, Boukhtouta A (2010) Multi-agent coordination by temporal plan fusion: application to combat search and rescue. Inf Fusion 11(3):220–232CrossRefGoogle Scholar
  2. Ao Z, Scholz J, Oxenham M (2014) A scientific inquiry fusion theory for high-level information fusion. In: Proceedings of the 17th International Conference on Information Fusion, SalamancaGoogle Scholar
  3. Avrahami-Zilberbrand D, Kaminka GA (2014) Chapter 4 - keyhole adversarial plan recognition for recognition of suspicious and anomalous behavior. In: Sukthankar G, Goldman RP, Geib C, Pynadath DV, Bui HH (eds) Plan, activity, and intent recognition. Morgan Kaufmann, Boston, pp 87–119. http://dx.doi.org/10.1016/B978-0-12-398532-3.00004-X. http://www.sciencedirect.com/science/article/pii/B978012398532300004X
  4. Bharathan V, Josephson JR (2006) An abductive framework for level one information fusion. In: Proceedings of the 9th International Conference on Information Fusion, FlorenceGoogle Scholar
  5. Biermann J, Horling P, Snidaro L (2013) Experiences and challenges in automated support for intelligence in asymmetric operations. J Adv Inf Fusion 8(2):101–118Google Scholar
  6. Biermann J, Nimier V, Garcia J, Rein K, Krenc K, Snidaro L (2014) Multi-level fusion of hard and soft information. In: Proceedings of the 17th International Conference on Information Fusion. ISIF, SalamancaGoogle Scholar
  7. Biggs N, Lloyd EK, Wilson RJ (1976) Graph theory 1736–1936. Oxford University Press, OxfordMATHGoogle Scholar
  8. Coffman T, Greenblatt S, Marcus S (2004) Graph-based technologies for intelligence analysis. Commun ACM 47(3):45–47CrossRefGoogle Scholar
  9. de Kleer J (1986) An assumption-based {TMS}. Artif Intell 28(2):127–162. http://dx.doi.org/10.1016/0004-3702(86)90080-9. http://www.sciencedirect.com/science/article/pii/0004370286900809
  10. de Vries G, Malaisé V, van Someren M, Adriaans P, Schreiber G (2008) Semi-automatic ontology extension in the maritime domain. In: Proceedings of twentieth Belgian-Dutch Conference on Artificial Intelligence (BNAIC 2008)Google Scholar
  11. DiBona P, Belov N, Pawlowski A (2006) Plan-driven fusion: shaping the situation awareness process using empirical plan data. In: Proceedings of the 9th International Conference on Information Fusion. ISIF, FlorenceGoogle Scholar
  12. Ferrin G, Snidaro L, Canazza S, Foresti G (2008) Soft data issues in fusion of video surveillance. In: Proceedings of the Eleventh International Conference on Information Fusion, Cologne, pp 1882–1889Google Scholar
  13. Ferrin G, Snidaro L, Foresti GL (2010) Revisiting the role of abductive inference in fusion domain. In: 13th Conference on Information Fusion. IEEE, New YorkGoogle Scholar
  14. Getoor L, Taskar B (eds) (2007) Statistical relational learning. Adaptive computation and machine learning. MIT, CambridgeMATHGoogle Scholar
  15. Hall D, McNeese M, Llinas J, Mullen T (2008) A framework for dynamic hard/soft fusion. In: Proceedings of the 11th International Conference on Information Fusion, CologneGoogle Scholar
  16. Hanson NR (1958) Patterns of discovery. Cambridge University Press, CambridgeGoogle Scholar
  17. Harman GH (1965) The inference to the best explanation. Philos Rev 74(1):88–95CrossRefMathSciNetGoogle Scholar
  18. Hristidis V, Chen SC, Li T, Luis S, Deng Y (2010) Survey of data management and analysis in disaster situations. J Syst Softw 83:1701–1714CrossRefGoogle Scholar
  19. Josephson JR (2008) Abductive inferencing for integrating information from human and robotic sources. In: Proceedings of the 11th International Conference on Information Fusion, Cologne, pp 109–114Google Scholar
  20. Lambert DA (2006) A unification of sensor and higher-level fusion. In: Proceedings of the 9th international conference on Information Fusion, FlorenceGoogle Scholar
  21. Li X, Porikli F (2004) A hidden Markov model framework for traffic event detection using video features. In: International Conference on Image Processing, 2004 (ICIP ’04), vol 5, pp 2901–2904Google Scholar
  22. Little EG, Rogova GL (2005) Ontology meta-model for building a situational picture of catastrophic events. In: Proceedings of the Eighth international conference on Information Fusion. International Society of Information Fusion, PhiladelphiaCrossRefGoogle Scholar
  23. Llinas J (2002) Fusion for natural and man-made disasters. In: Proceedings of the fifth International Conference on Information Fusion. International Society of Information Fusion, AnnapolisGoogle Scholar
  24. Llinas J, Bowman CL, Rogova GL, Steinberg AN, Waltz EL, White FE (2004) Revisiting the JDL data fusion model II. In: Proceedings of the Seventh International Conference on Information Fusion, Stockholm, vol II, pp 1218–1230Google Scholar
  25. Möller R, Neumann B (2008) Ontology-based reasoning techniques for multimedia interpretation and retrieval. In: Semantic multimedia and ontologies: theory and applications. Springer, New YorkGoogle Scholar
  26. Munson LM (2009) Looking for anomalies all in the wrong places. In: USNI Proceedings Magazines 135/7/1,277Google Scholar
  27. Newman M (2010) Networks: an introduction. Oxford University Press, OxfordCrossRefGoogle Scholar
  28. Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San FranciscoGoogle Scholar
  29. Poole D (1993) Probabilistic horn abduction and Bayesian networks. Artif Intell 64(1):81–129CrossRefMATHGoogle Scholar
  30. Raghavan S, Singla P, Mooney RJ (2014) Chapter 3 - plan recognition using statistical-relational models. In: Sukthankar G, Goldman RP, Geib C, Pynadath DV, Bui HH (eds) Plan, activity, and intent recognition. Morgan Kaufmann, Boston, pp 57–85. http://dx.doi.org/10.1016/B978-0-12-398532-3.00003-8. http://www.sciencedirect.com/science/article/pii/B9780123985323000038
  31. Richardson M, Domingos P (2006) Markov logic networks. Mach Learn 62:107–136CrossRefGoogle Scholar
  32. Rogova GL (2009) Context-awareness in crisis management. In: Proceedings of the Military Communications Conference. IEEE, New York, pp 1–7Google Scholar
  33. Rogova GL, Scott PD, Lollett C, Mudiyanur R (2006) Reasoning about situations in the early post-disaster response environment. In: 9th International Conference on Information FusionGoogle Scholar
  34. Russell SJ, Norvig P (2010) Artificial intelligence - a modern approach, 3rd edn., vol I-XVIII. Pearson Education, Upper Saddle RiverGoogle Scholar
  35. Sambhoos K, Llinas J, Little E (2008) Graphical methods for real-time fusion and estimation with soft message data. In: 11th International Conference on Information Fusion. IEEE, New York, pp 1–8Google Scholar
  36. Scott P, Rogova G (2004) Crisis management in a data fusion synthetic task environment. In: Proceedings of FUSION 2004Google Scholar
  37. Snidaro L, Belluz M, Foresti G (2007) Domain knowledge for surveillance applications. In: Proceedings of the Tenth International Conference on Information Fusion, QuebecCrossRefGoogle Scholar
  38. Snidaro L, Visentini I, Foresti G (2011) Data fusion in modern surveillance. Studies in computational intelligence, vol 336, chap. 1. Springer, Berlin, pp 1–21Google Scholar
  39. Snidaro L, García J, Corchado JM (2015a) Context-based information fusion. Inf Fusion 21:82–84. doi:10.1016/j.inffus.2014.02.001. Guest EditorialCrossRefGoogle Scholar
  40. Snidaro L, García J, Llinas J (2015b) Context-based information fusion: a survey and discussion. Inf Fusion 25:16–31. doi:10.1016/j.inffus.2015.01.002 CrossRefGoogle Scholar
  41. Snidaro L, Visentini I, Bryan K (2015c) Fusing uncertain knowledge and evidence for maritime situational awareness via Markov logic networks. Inf Fusion 21:159–172. doi:10.1016/j.inffus.2013.03.004 CrossRefGoogle Scholar
  42. Steinberg A, Rogova G (2008) Situation and context in data fusion and natural language understanding. In: Proceedings of the Eleventh International Conference on Information Fusion, CologneGoogle Scholar
  43. Sukthankar G, Goldman RP, Geib C, Pynadath DV, Bui HH (eds) (2014) Plan, activity, and intent recognition. Morgan Kaufmann, BostonGoogle Scholar
  44. Vishwakarma S, Agrawal A (2013) A survey on activity recognition and behavior understanding in video surveillance. Vis Comput 29(10):983–1009. doi:10.1007/s00371-012-0752-6. http://dx.doi.org/10.1007/s00371-012-0752-6

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of UdineUdineItaly

Personalised recommendations