Skip to main content

Prospects of Functional Genomics in Sugarcane

  • Chapter

Abstract

Sugarcane is an important commercial crop cultivated for sugar and energy. However, cultivar improvement may be limited due to the narrow genetic base of desired genes. In this sense, functional genomics is a promising tool to assist in the process of developing improved cultivars. Genetic maps linking DNA markers and traits have been developed, but marker-assisted breeding is in its infancy in sugarcane, and genome sequencing has just recently commenced. Substantial resources are available for the sugarcane transcriptome, and both specific and overlapping gene expression patterns for many traits have been established. Gene silencing and over-expression show promise as tests for gene function in sugarcane, and progress has been made in dissecting sucrose accumulation pathways. To broadly assign functions to unknown genes, different fast and multiple parallel approaches are currently used and developed. Such methods allow analysis of the different constituents of the cell that help to deduce gene function, namely the transcripts, proteins and metabolites. Similarly the phenotypic variations of entire mutant collections can now be analyzed in a much faster and more efficient manner than earlier. The different methodologies have developed to form their own fields within the functional genomics technological platform and are termed transcriptomics, proteomics, metabolomics and phenomics. This chapter focuses on recent technological developments and their impact on the field of sugarcane functional genomics. Understanding the unique biological attributes of sugarcane through functional genomics will provide innovative improvement applications that can underpin future, bio-energy and biomaterial industries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aharoni A, Vorst O (2002) DNA microarrays for functional plant genomics. Plant Mol Biol 48:99–118

    Article  CAS  PubMed  Google Scholar 

  • Alexander RD, Steven A, Barrass JD et al (2010) Splicing-dependent RNA polymerase pausing in yeast. Mol Cell 40(4):582–593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amalraj RS, Selvaraj N, Veluswamy GK et al (2010) Sugarcane proteomics: establishment of a protein extraction method for 2-DE in stalk tissues and initiation of sugarcane proteome reference map. Electrophoresis 31(12):1959–1974

    Article  CAS  PubMed  Google Scholar 

  • Appleby N, Edwards D, Batley J (2009) New technologies for ultra-high throughput genotyping in plants. Methods Mol Biol 513:19–39

    Article  CAS  PubMed  Google Scholar 

  • Boudsocq M, Lauriere C (2005) Osmotic signaling in plants: multiple pathways mediated by emerging kinase families. Plant Physiol 138(3):1185–1194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Broadhurst DI, Kell DB (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2:171–196

    Article  CAS  Google Scholar 

  • Buchel CS, Dry IB, Robinson SP (1996) Isolation of a full-length cDNA encoding polyphenol oxidase from sugarcane, a C4 grass. Plant Mol Biol 31:1233–1238

    Article  Google Scholar 

  • Bugos RC, Thom M (1993) Glucose transporter cDNAs from sugarcane. Plant Physiol 103:1469–1470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calsa T Jr, Figueira A (2007) Serial analysis of gene expression in sugarcane (Saccharum spp.) leaves revealed alternative C4 metabolism and putative antisense transcripts. Plant Mol Biol 63(6):745–762

    Article  CAS  PubMed  Google Scholar 

  • Calsa T Jr, Carraro DM, Benatti MR et al (2004) Structural features and transcript-editing analysis of sugarcane (Saccharum officinarum L.) chloroplast genome. Curr Genet 46(6):366–373

    Article  Google Scholar 

  • Carson DL, Huckett BI, Botha FC (2002) Sugarcane ESTs differentially expressed in immature and maturing intermodal tissue. Plant Sci 162(2):289–300

    Article  CAS  Google Scholar 

  • Casu RE, Mannersa JM, Bonnett GD et al (2005) Genomics approaches for the identification of genes determining important traits in sugarcane. Field Crop Res 92(2–3):137–147

    Article  Google Scholar 

  • Cato SA, Gardner RC, Kent J, Richardson TE (2001) A rapid PCR-based method for genetically mapping ESTs. Theor Appl Genet 102:296–306

    Article  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB et al (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • D’Hont A, Glaszmann JC (2001) Sugarcane genome analysis with molecular markers, a first decade of research. Proc Int Soc Sugarcane Technol 24:556–559

    Google Scholar 

  • D’Hont A, Ison D, Alix K et al (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of RNA genes. Genome 41:221–225

    Article  Google Scholar 

  • de Setta N, Monteiro-Vitorello CB, Metcalfe CJ et al (2014) Building the sugarcane genome for biotechnology and identifying evolutionary trends. BMC Genome 15:540

    Article  Google Scholar 

  • Edwards D, Batley J (2004) Plant bioinformatics: from genome to phenome. Trends Biotechnol 22(5):222–237

    Article  Google Scholar 

  • Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11

    Article  CAS  PubMed  Google Scholar 

  • Emidio C, Norambuena T, Marti-Renom MA, Melo F (2011) All-atom knowledge-based potential for RNA structure prediction and assessment. Bioinformatics 27(8):1086–1093

    Article  Google Scholar 

  • Fields S (2001) Proteomics: proteomics in genomeland. Science 291:1221–1224

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Franco FP, Santiago AC, Henrique-Silva F et al (2014) The sugarcane defense protein SUGARWIN2 causes cell death in Colletotrichum falcatum but not in non-pathogenic fungi. PLoS One 9(3), e91159. doi:10.1371/journal.pone.0091159

    Article  PubMed Central  PubMed  Google Scholar 

  • Geethalakshmi S, Barathkumar S et al (2014) The MYB transcription factor family genes in sugarcane (Saccharum sp). Plant Mol Biol Rep. doi:10.1007/s11105-014-0768-3

    Google Scholar 

  • Glassop D, Roessner U, Bacic A, Bonnett GD (2007) Changes in the sugarcane metabolome with stem development. Are they related to sucrose accumulation? Plant Cell Physiol 48(4):573–584

    Article  CAS  PubMed  Google Scholar 

  • Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810

    Article  CAS  PubMed  Google Scholar 

  • Gong L, Deng Z (2010) EST-SSR markers for gerbera (Gerbera hybrida). Mol Breed 26:125–132

    Article  CAS  Google Scholar 

  • Gupta V, Raghuvanshi S, Gupta A et al (2010) The water-deficit stress- and red-rot-related genes in sugarcane. Funct Integr Genomics 10:207–214

    Article  CAS  PubMed  Google Scholar 

  • Heffner EL, Jannink JL, Sorrells ME (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65–75

    Article  Google Scholar 

  • Heller RA, Schena M, Chai A et al (1997) Discovery and analysis of inflammatory disease-related genes using cDNA microarrary. Proc Natl Acad Sci U S A 94:2150–2155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huttenhofer A, Vogel J (2006) Experimental approaches to identify non-coding RNAs. Nucleic Acid Res 34(2):635–646

    Article  PubMed Central  PubMed  Google Scholar 

  • Jing Q, Huang S, Guth S et al (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120:623–634

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45(3):346–350

    Article  CAS  PubMed  Google Scholar 

  • Ken NP (2010) The functional genomics of inbreeding depression: a new approach to an old problem. Bio Sci 60(4):267–277

    Google Scholar 

  • Kurowska M, Daszkowska-Golec A, Gruszka D et al (2011) Tilling: a shortcut in functional genomics. J Appl Genet 52:371–390

    Article  PubMed Central  PubMed  Google Scholar 

  • Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29:33–40

    Article  CAS  PubMed  Google Scholar 

  • Leibbrandt NB, Snyman SJ (2003) Stability of gene expression and agronomic performance of a transgenic herbicide resistant sugarcane line in South Africa. Crop Sci 43(2):671–677

    Article  CAS  Google Scholar 

  • Lembke CG, Nishiyama MY Jr, Sato PM et al (2012) Identification of sense and antisense transcripts regulated by drought in sugarcane. Plant Mol Biol 79:461–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lopez C, Jorge V, Piegu B et al (2004) A unigene catalogue of 5700 expressed genes in cassava. Plant Mol Biol 56:541–554

    Article  PubMed  Google Scholar 

  • Lu YH, D’Hont A, Paulet F et al (1994) Molecular diversity and genome structure in modern sugarcane varieties. Euphytica 78:217–226

    Article  Google Scholar 

  • Lu Y, Savage LJ, Larson MD et al (2011) Chloroplast: a database for large-scale phenotypic screening of Arabidopsis mutants. Plant Physiol 155:1589–1600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma J, Morrow DJ, Fernandes J, Walbot V (2006) Comparative profiling of the sense and antisense transcriptome of maize lines. Genome Biol 7(3):R22

    Article  PubMed Central  PubMed  Google Scholar 

  • Manners JM, Casu RE (2011) Transcriptome analysis and functional genomics of sugarcane. Trop Plant Biol 4(1):9–21

    Article  CAS  Google Scholar 

  • Marconi TG, Costa EA, Miranda HR et al (2011) Functional markers for gene mapping and genetic diversity studies in sugarcane. BMC Res Notes 4:264. doi:10.1186/1756-0500-4-264

    Article  PubMed Central  PubMed  Google Scholar 

  • Menossi M, Silva-Filho MC, Vincentz M et al (2008) Sugarcane functional genomics: gene discovery for agronomic trait development. Int J Plant Genom 458732. doi:10.1155/2008/458732

  • Mir RR, Zaman-Allah M, Sreenivasulu N et al (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mittler R, Shulaev V (2013) Functional genomics, challenges and perspectives for the future. Physiol Plant 148:317–321

    Article  CAS  PubMed  Google Scholar 

  • Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155:86–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • NCBI (2014) http://www.ncbi.nlm.nih.gov/nucest/?term=sugarcane

  • NIFA-NSF PW Report (2011) Phenomics: genotype to phenotype, a report of the phenomics workshop sponsored by the USDA and NSF

    Google Scholar 

  • Nogueira FTS, Rosa VE Jr, Menossi M et al (2003) Expression profiles and data mining of sugarcane response to low temperature. Plant Physiol 132:181–1824

    Article  Google Scholar 

  • Osabe M, Sugatani J, Takemura A, Kurosawa M, Yamazaki Y, Ikari A, Miwa M (2009) Up-regulation of CAR expression through Elk-1 in HepG2 and SW480 cells by serum starvation stress. FEBS Lett 583:885–889

    Article  CAS  PubMed  Google Scholar 

  • Papini-Terzi FS, Rocha FR, Vêncio RZ et al (2005) Transcription profiling of signal transduction-related genes in sugarcane tissues. DNA Res 12(1):27–38

    Article  CAS  PubMed  Google Scholar 

  • Parida SK, Rajkumar KA, Dalal V et al (2006) Unigene derived microsatellite markers for the cereal genomes. Theor Appl Genet 112:808–817

    Article  CAS  PubMed  Google Scholar 

  • Parida SK, Kalia SK, Kaul S et al (2009) Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor Appl Genet 118:327–338

    Article  CAS  PubMed  Google Scholar 

  • Que YX, Yang ZX, Xu LP, Chen RK (2009) Isolation and identification of differentially expressed genes in sugarcane infected by Ustilago scitaminea. Acta Agron Sin 35(3):452–458

    Article  CAS  Google Scholar 

  • Que Y, Xu L, Lin J et al (2011) Differential protein expression in sugarcane during sugarcane-Sporisorium scitamineum interaction revealed by 2-DE and MALDI-TOF-TOF/MS. Compar Funct Genomics Article ID 989016. doi:org/10.1155/2011/989016

  • Reddy RN, Madhusudhana R, Mohan SM et al (2011) Characterization, development and mapping of unigene-derived microsatellite markers in sorghum [Sorghum bicolor (L.) Moench]. Mol Breed. doi:10.1007/s11032-011-9571-0

  • Riera M, Valon C, Fenzi F et al (2005) The genetics of adaptive responses to drought stress: abscisic acid dependent and abscisic acid-independent signalling components. Physiol Plant 123(2):111–119

    Article  CAS  Google Scholar 

  • Roach BT (1972) Nobilisation of sugarcane. Proc Int Soc Sugar Cane Technol 14:206–216

    Google Scholar 

  • Schlog PS, Nogueira FTS, Drummond R et al (2008) Identification of new ABA- and MEJA-activated sugarcane bZIP genes by data mining in the SUCEST database. Plant Cell Rep 27:335–345

    Article  Google Scholar 

  • Sharma MK, Mishra SK (2014) Applications of metabolomics in plant biology. Agrotech 2:4

    Article  Google Scholar 

  • Singh RK, Singh SB (2004) Breeding Strategies for commercially elite early maturing varieties of sugarcane (Saccharum species complex). Sugar Tech 6(1&2):89–92

    Article  Google Scholar 

  • Singh RK, Singh RB, Singh SP, Sharma ML (2011) Identification of sugarcane microsatellites associated to sugar content in sugarcane and transferability to other cereal genomes. Euphytica 182:335–354. doi:10.1007/s10681-011-0484-0

    Article  CAS  Google Scholar 

  • Singh RK, Singh SP, Tiwari DK et al (2013) Genetic mapping and QTL analysis for sugar yield-related traits in sugarcane. Euphytica 191:333–353. doi:10.1007/s10681-012-0841-7

    Article  CAS  Google Scholar 

  • Sreenivasan TV, Ahloowalia BS, Heinz DJ (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 211–254

    Chapter  Google Scholar 

  • Storz G (2002) An expanding universe of noncoding RNAs. Science 296(5571):1260–1263

    Article  CAS  PubMed  Google Scholar 

  • Sugihario B, Ermawati N, Mori N et al (2002) Identification and characterization of a gene encoding drought-inducible protein localized in the bundle sheath cell of sugarcane. Plant Cell Physiol 43:350–354

    Article  Google Scholar 

  • Terzi FSP, Flávia R, Rocha FR et al (2009) Sugarcane genes associated with sucrose content. BMC Genome 10:120. doi:10.1186/1471-2164-10-120

    Article  Google Scholar 

  • Tiessen A, Hendriks JHM, Stitt M et al (2002) Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell 14:2191–2213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tran LS, Mochida K (2010) Functional genomics of soybean for improvement of productivity in adverse conditions. Funct Integr Genomics 10:447–462. doi:10.1007/s10142-010-0178-z

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Garner A, Sorells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  • Vettore AL, da Silva FR, Kemper EL et al (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13(12):2725–2735

    Article  PubMed Central  PubMed  Google Scholar 

  • Walthall CL, Hatfield J, Backlund P et al (2012) Climate change and agriculture in the United States: effects and adaptation, USDA Technical Bulletin. www.usda.gov/oce/climate_change/effects_2012/effects_agriculture.htm

  • Weckwerth W, Morgenthal K (2005) Abiotic stress in plants and metabolic responses agricultural and biological sciences. Drug Discov Today 10(22):1551–1558

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Qi X, Wang L et al (2011) Characterization of the Sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genom 12:451. doi:10.1186/1471-2164-12-451

  • Wu Q, Xu L, Guo J et al (2013) Transcriptome profile analysis of sugarcane responses to Sporisorium scitaminea infection using solexa sequencing technology. Biomed Res Int. doi.org/10.1155/2013/298920

  • Xiang C, Brownstein M (2003) Fabrication of cDNA microarrays. In: Brownstein MJ, Khodursky A (eds) Methods in molecular biology: vol. 224: functional genomics: methods and protocols. Humana Press, Totowa, pp 1–7

    Google Scholar 

  • Yamamoto M, Wakatsuki T, Hada A, Ryo A (2001) Use of serial analysis of gene expression (SAGE) technology. J Immunol Methods 250(1–2):45–66

    Article  CAS  PubMed  Google Scholar 

  • You-Xiong Q, Jian-Wei L, Xian-Xian S et al (2011) Differential gene expression in sugarcane in response to challenge by fungal pathogen Ustilago scitaminea revealed by cDNA-AFLP. J Biomed Biotechnol. doi.org/10.1155/2011/160934

  • Zenoni S, Ferrarini A, Giacomelli E (2010) Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol 152(4):1787–1795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang BH, Pan XP, Wang QL et al (2005) Identification and characterization of new plant microRNAs using EST analysis. Cell Res 15(5):336–360

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kushal Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, R.K., Singh, S.P. (2015). Prospects of Functional Genomics in Sugarcane. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Springer, Cham. https://doi.org/10.1007/978-3-319-22521-0_17

Download citation

Publish with us

Policies and ethics