Skip to main content

Abstract

As more transgenic crops are commercially released, environmental hazards and potential risk to human health have become a serious concern worldwide. This has led to the development of the two new concepts of cisgenesis and intragenesis as alternatives to transgenesis. Both these concepts, although different at the molecular level, make use of genes present in a sexually-compatible gene pool for crop improvement. The risks associated with alien gene introgression are mitigated to some extent. To date these new concepts have been employed in few important food, fruit, forage and woody crops and many more developments are in the pipeline. Studies have revealed that cisgenesis is similar to traditional breeding with additional advantages of transfer of desirable gene in a single step and less risk of linkage drag, while both intragenesis and transgenesis may lead to novel hazards like foreign gene introgression unassociated with conventional breeding. These novel techniques are safer than transgenesis; however, unintended and unexpected effects of random gene insertion and interaction between foreign genes and host genes in the transgenic organisms are reported. Research focus is now shifting to gene targeting to achieve site-specific mutagenesis to avoid potential risks associated with insertions at random locations (ectopic) in the genome. Acceptance of genetically modified organisms (GMOs) requires consumer awareness of safety issues with respect to the environment and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahloowalia BS, Maluszynski M (2001) Induced mutations – a new paradigm in plant breeding. Euphytica 118(2):167–173

    Article  CAS  Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Article  Google Scholar 

  • Akhond M, Machray G (2009) Biotech crops: technologies, achievements and prospects. Euphytica 166:47–59

    Article  CAS  Google Scholar 

  • Anderson PC, Georgeson M (1989) Herbicide tolerant mutants of corn. Genome 31:994

    Article  CAS  Google Scholar 

  • Atanassov A, Bahieldin A, Brink J et al (2004) To reach the poor: results from the ISNAR-IFPRI next harvest study on genetically modified crops, public research, and policy implications (no.116). In: EPTD discussion paper. Environment and Production Technology Division, International Food Policy Research Institute, Washington, DC, pp 1–57

    Google Scholar 

  • Bajaj S, Puthigae S, Templeton K et al (2008) Towards engineering drought tolerance in perennial ryegrass using its own genome. Paper presented at the 6th Canadian plant genomics workshop, Toronto, 23–26 June 2008

    Google Scholar 

  • Barton K, Whitely H, Yang NS (1987) Bacillus thuringiensis d-endotoxin in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol 85:1103–1109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhargava A, Carmona FF (2012) Cisgenesis and intragenesis. In: Bhargava A, Srivastava S (eds) Biotechnology: new ideas, new developments : a textbook of modern technology. Nova Science Publishers, New York, pp 151–159

    Google Scholar 

  • Brunner H (1995) Radiation induced mutations for plant selection. Appl Radiat Isot 56(6/7):589–594

    Article  Google Scholar 

  • Chakraborty S, Chakraborty N, Datta A (2000) Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc Natl Acad Sci U S A 97:3724–3729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chawla R, Shakya R, Rommens CM (2012) Tuber-specific silencing of asparagine synthetase-1 reduces the acrylamide-forming potential of potatoes grown in the field without affecting tuber shape and yield. Plant Biotechnol J 10:913–924

    Article  CAS  PubMed  Google Scholar 

  • Cromwell GL, Pickett RA, Beeson WM (1967) Nutritional value of opaque-2 corn for swine. J Anim Sci 26:1325–1331

    CAS  PubMed  Google Scholar 

  • D’Halluin K, Botterman J, De Greef W (1990) Transformation engineering of herbicide resistant alfalfa and evaluation under field conditions. Crop Sci 30:866

    Article  Google Scholar 

  • D’Halluin K, Bossut M, Bonne E et al (1992) Transformation of sugarbeet (Beta vulgaris L.) and evaluation of herbicide resistance in transgenic plants. Biotechnol 10:309

    Article  Google Scholar 

  • Dale PJ (1992) Spread of engineered genes to wild relatives. Plant Physiol 100(1):13–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dalecky A, Bourguet D, Ponsard S (2007) Does the European corn borer disperse enough for a sustainable control of resistance to Bt maize via the high dose/refuge strategy? Cah Agric 16:171–176

    Google Scholar 

  • de Vetten N, Wolters A, Raemakers K et al (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442

    Article  PubMed  Google Scholar 

  • Dehesh K, Jones A, Knutzon DS, Voelker TA (1996) Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase cDNA from Cuphea hookeriana. Plant J 9:167–172

    Article  CAS  PubMed  Google Scholar 

  • Del Vecchio AJ (1996) High-laurate canola: how Calgene’s program began, where it’s headed. INFORM 7:230–243

    Google Scholar 

  • Dhekney SA, Li ZT, Gray DJ (2011) Grapevines engineered to express cisgenic Vitis vinifera thaumatin-like protein exhibit fungal disease resistance. In Vitro Cell Dev Biol Plant 47:458–466

    Article  CAS  Google Scholar 

  • Espinoza C, Schlechter R, Herrera D et al (2013) Cisgenesis and intragenesis: new tools for improving crops. Biol Res 46:323–331

    Article  CAS  PubMed  Google Scholar 

  • Finer JJ, Mc Mullen MD (1990) Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep 8:586–589

    Article  CAS  PubMed  Google Scholar 

  • Firoozabady E, Debore DL, Merlo DJ et al (1987) Transformation of cotton, Gossypium hirsutum L. by Agrobacterium tumfaciens and regeneration of transgenic plants. Plant Mol Biol 10:566–578

    Article  Google Scholar 

  • Fitch MMM, Manshard RM, Gonsalves D et al (1992) Virus resistant papaya derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Biotechnol 10:1466–1472

    Article  CAS  Google Scholar 

  • Forsbach A, Schubert D, Lechtenberg B (2003) A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Mol Biol 52:161–176

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Froman B, Ursin V (2002) Genetic modification of oils for improved health benefits: production of long chain omega-3 fatty acids in plants. In: Abstracts of papers of the American chemical society 223:U35

    Google Scholar 

  • Gadaleta A, Giancaspro A, Blechl AE, Blanco A (2008) A transgenic durum wheat line that is free of marker genes and expresses 1DY10. J Cereal Sci 48:439–445

    Article  CAS  Google Scholar 

  • Gessler C, Patocchi A (2007) Recombinant DNA technology in apple. Adv Biochem Eng Biotechnol 107:113–132

    CAS  PubMed  Google Scholar 

  • Giovannetti M, Sbrana C, Turrini A (2005) The impact of genetically modified crops on soil microbial communities. Riv Biol 98:393–417

    PubMed  Google Scholar 

  • Gonsalves D, Ferreira S, Manshardt R et al (1998) Transgenic virus resistant papaya: new hope for control of papaya ringspot virus in Hawaii. APSnet feature story for September 1998 on worldwide web. http://www.apsnet.org/publications/apsnetfeatures/Pages/Papaya.aspx

  • Greco R, Ouwerkerk PFB, Sallaud C et al (2001) Transposon insertional mutagenesis in rice. Plant Physiol 125:1175–1177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han KM, Dharmawardhana P, Arias RS et al (2011) Gibberellin-associated cisgenes modify growth, stature and wood properties in Populus. Plant Biotechnol J 9:162–178

    Article  CAS  PubMed  Google Scholar 

  • Haverkort AJ, Struik PC, Visser RGF, Jacobsen E (2009) Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Res 52:249–264

    Article  Google Scholar 

  • Hemenway C, Fang RX, Kaniewske WK (1988) Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA. EMBO J 7:1273–1280

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holme IB, Dionisio G, Brinch-Pedersen H et al (2012) Cisgenic barley with improved phytase activity. Plant Biotechnol J 10:237–247

    Article  CAS  PubMed  Google Scholar 

  • Holme IB, Wendt T, Holm PB (2013) Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol J 11:395–407

    Article  CAS  PubMed  Google Scholar 

  • Hou H, Atlihan N, Lu ZX (2014) New biotechnology enhances the application of cisgenesis in plant breeding. Front Plant Sci 389(5):1–5

    Google Scholar 

  • http://www.apsnet.org/education/feature/papaya/Yop.htm. Accessed 29 Nov 2014

  • http://www.efsa.europa.eu/en/science/gmo/gmo_guidance/660.html. Accessed 15 Jul 2014

  • Hunter P (2014) “Genetically Modified Lite” placates public but not activists. EMBO Rep. doi:10.1002/embr.201338365

    Google Scholar 

  • Itaya A (2008) Small RNAs in tomato fruit and leaf development. Biochim Biophys Acta 1779:99–107

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen E, Schouten HJ (2007) Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants. Trends Biotechnol 25(5):219–223

    Article  CAS  PubMed  Google Scholar 

  • James MJ, Ursin VM, Cleland LG (2003) Metabolism of stearidonic acid in human subjects: comparison with the metabolism of other n-3 fatty acids. Am J Clin Nutr 77:1140–1145

    CAS  PubMed  Google Scholar 

  • Jochemsen H, Schouten HJ (2000) Ethische beoordeling van genetische modificatie. In: Jochemsen H (ed.) Toetsen en Begrenzen. Een Ethische en Politieke Beoordeling van de Moderne Biotechnologie. Buijten and Schipperheijn. Amsterdam, pp 88–95

    Google Scholar 

  • Joshi SG, Schaart JG, Groenwold R et al (2011) Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples. Plant Mol Biol 75:579–591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katsube T, Kurisaka N, Ogawa M et al (1999) Accumulation of soybean glycinin and its assembly with the glutelins in rice. Plant Physiol 120:1063–1074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kinney AJ, Knowlton S (1998) Designer oils: the high oleic acid soybean. In: Roller S, Harlander S (eds) Genetic modification in the food industry. Blackie Academic and Professional, London, pp 193–213

    Chapter  Google Scholar 

  • Kok EJ, Kuiper HA (2003) Comparative safety assessment for biotech crops. Trends Biotechnol 21:439–444

    Article  CAS  PubMed  Google Scholar 

  • Kok EJ, Keijer J, Meter GA, Kuiper HA (2008) Comparative safety assessment of plant-derived foods. Regul Toxicol Pharmacol 50(1):98–113

    Article  CAS  PubMed  Google Scholar 

  • Konig A (2003) A framework for designing transgenic crops – science, safety and citizen’s concerns. Nat Biotechnol 21:1274–1279

    Article  PubMed  Google Scholar 

  • Krishna VV, Qaim M, Zilberman D (February 2014) Transgenic crops, production risk, and agrobiodiversity. ZEF- discussion papers on development policy no. 186. http://dx.doi.org 10.2139/ssrn.2405466

    Google Scholar 

  • Li L, Liu SM, Hu YL et al (2001) Increase of sulphurcontaining amino acids in transgenic potato with 10 ku zein gene from maize. Chin Sci Bull 46:482–484

    Article  CAS  Google Scholar 

  • Li GP, Wu KM, Gould F et al (2007) Increasing tolerance to Cry1Ac cotton from cotton bollworm Helicoverpa armigera was confirmed in Bt cotton farming area of China. Ecol Entomol 32:366–375

    Article  Google Scholar 

  • Lu BR, Snow AA (2005) Gene flow from genetically modified rice and its environmental consequences. Bioscience 55:669–678

    Article  Google Scholar 

  • Lu BR, Yang C (2009) Gene flow from genetically modified rice to its wild relatives: assessing potential ecological consequences. Biotechnol Adv 27(6):1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Lusser M, Parisi C, Plan D, Rodríguez-Cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nat Biotechnol 30:3

    Article  Google Scholar 

  • Lyon BR, Llewellyn DJ, Huppatz JL et al (1989) Expression of a bacterial gene in transgenic tobacco plant confers resistance to herbicide 2,4-dichlorophenoxyacetic acid. Plant Mol Biol 13:533

    Article  CAS  PubMed  Google Scholar 

  • Maluszynski M (2001) Officially released mutant varieties – the FAO/IAEA database. Plant Cell Tiss Org Cult 65:175–177

    Article  Google Scholar 

  • Mei M, Deng H, Lu Y et al (1994) Mutagenic effects of heavy-ion radiation in plants. Life Sci Space Res 14:363–372

    CAS  Google Scholar 

  • Mercer KL, Andow DA, Wyse DL, Shaw RG (2007) Stress and domestication traits increase the relative fitness of crop-wild hybrids in sunflower. Ecol Lett 10:383–393

    Article  PubMed  Google Scholar 

  • Molesini B, Youry P, Pandolfini T (2012) Fruit improvement using intragenesis and artificial microRNA. Trends Biotechnol 30(2):143–147

    Article  Google Scholar 

  • Newhouse K, Singh B, Shaner D, Stidham M (1991) Mutations in corn (Zea mays L.) conferring resistance to imidazonilone herbicides. Theor Appl Genet 83:65

    Article  CAS  PubMed  Google Scholar 

  • Newhouse KE, Smith WA, Starrett MA et al (1992) Tolerance to imidazonilone herbicides in wheat. Plant Physiol 100:882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Callaghan M, Glare TR, Burgess EPJ, Malone LA (2005) Effects of plants genetically modified for insect resistance on non-target organisms. Annu Rev Entomol 50:271–292

    Article  PubMed  Google Scholar 

  • Oliveira AR, Castro TR, Capalbo DMF, Delalibera I (2007) Toxicological evaluation of genetically modified cotton BollgardR and Dipel RWP on the non-target soil mite Scheloribates praeincisus Acari: Oribatida. Exp Appl Acarol 41:191–201

    Article  PubMed  Google Scholar 

  • O’Quinn PR, Nelssen JL, Goodband RD et al (2000) Nutritional value of a genetically improved high-lysine, high-oil corn for young pigs. J Anim Sci 78:2144–2149

    PubMed  Google Scholar 

  • Papazova N, Gecheff K (2003) Position-dependent gene activity in cytologically reconstructed barley karyotypes. Cell Biol Int 27:247–248

    Article  CAS  PubMed  Google Scholar 

  • Prins T, Kok E (2010) COGEM report: food and feed safety aspects of cisgenic crop plant varieties. http://edepot.wur.nl/157733

  • Rai MK, Shekhawat NS (2014) Recent advances in genetic engineering for improvement of fruit crops. Plant Cell Tiss Org Cult 116(1):1–15

    Article  CAS  Google Scholar 

  • Reddy AS, Thomas TL (1996) Expression of a cyanobacterial DELTA 6-desaturase gene results in gamma-linolenic acid production in transgenic plants. Nat Biotechnol 14:639–642

    Article  CAS  PubMed  Google Scholar 

  • Roesler K, Shintani D, Savage L et al (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol 113:75–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rommens CM (2004) All-native DNA transformation: a new approach to plant genetic engineering. Trends Plant Sci 9:457–464

    Article  CAS  PubMed  Google Scholar 

  • Rommens CM (2007) Intragenic crop improvement: combining the benefits of traditional breeding and genetic engineering. J Agr Food Chem 55:4281–4288

    Article  CAS  Google Scholar 

  • Rommens CM, Ye J, Humara JM et al (2003) Precise breeding. U.S. Patent Application No. 221,213

    Google Scholar 

  • Rommens CM, Humara JM, Ye J et al (2004) Crop improvement through modification of the plant’s own genome. Plant Physiol 135:421–431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rommens CM, Bougri O, Yan H, Humara JM, Owen J, Swords K, Ye J (2005) Plant-derived transfer DNAs. Plant Physiol 139:1338–1349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rommens CM, Ye J, Richael C, Swords K (2006) Improving potato storage and processing characteristics through all-native DNA transformation. J Agr Food Chem 54:9882–9887

    Article  CAS  Google Scholar 

  • Rommens CM, Yan H, Swords K, Richael C, Ye J (2008) Low-acrylamide French fries and potato chips. Plant Biotechnol J 6:843–853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schaart JG, Krens FA, Pelgrom KTB et al (2004) Effective production of marker-free transgenic strawberry plants using inducible site-specific recombination and a bifunctional selectable marker gene. Plant Biotechnol J 2:233–240

    Article  CAS  PubMed  Google Scholar 

  • Schaart JG, Visser RGF (2009) Novel plant breeding techniques – consequences of new genetic modification-based plant breeding techniques in comparison to conventional plant breeding. COGEM Research Report Number 2009-02, The Netherlands Commission on Genetic Modification

    Google Scholar 

  • Schouten HJ, Jacobsen E (2008) Cisgenesis and intragenesis, sisters in innovative plant breeding. Trends Plant Sci 13:260–261

    Article  CAS  PubMed  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006a) Cisgenic plants are similar to traditionally bred plants. EMBO Rep 7:750–753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006b) Do cisgenic plants warrant less stringent oversight? Nat Biotechnol 24(7):753

    Article  CAS  PubMed  Google Scholar 

  • Shirley BW, Hanley S, Goodman HM (1992) Effects of ionizing-radiation on a plant genome – analysis of two Arabidopsis transparent-testa mutations. Plant Cell 4(3):333–347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shiva Prasad G, Raju B, Rajesh Kumar K (2013) Cisgenesis – an alternate approach for development of genetically modified crops. Annu Biol Res 4(9):109–115

    Google Scholar 

  • Smith BD (1995) The emergence of agriculture. Scientific American Library, New York

    Google Scholar 

  • Streber WR, Willmitzer L (1989) Transgenic tobacco plants expressing a bacterial detoxifying enzyme are resistant to 2,4-D. Biotechnol J 7:811

    CAS  Google Scholar 

  • Szankowski I, Waidmann S, Degenhardt J et al (2009) Highly scab-resistant transgenic apple lines achieved by introgression of HcrVf2 controlled by different native promoter lengths. Tree Genet Genome 5(2):349–358

    Article  Google Scholar 

  • Tricoli D, Carney KJ, Russell PF et al (1995) Field evaluation of transgenic squash containing single or multiple virus coat protein gene constructs for resistance to cucumber mosaic virus, watermelon mosaic virus 2 and zucchini yellow mosaic virus. Biotechnol 13:1458–1465

    Article  CAS  Google Scholar 

  • Tuteja N, Verma S, Sahoo RK (2012) Recent advances in development of marker-free transgenic plants: regulation and biosafety concern. J Biosci 37:167–197

    Article  CAS  PubMed  Google Scholar 

  • Umbeck P, Johnson P, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Biotechnol 5:263–266

    Article  CAS  Google Scholar 

  • Vaeck M, Reynaerts A, Hoftey H et al (1987) Transgenic plants protected from insect attack. Nature 327:33–37

    Article  Google Scholar 

  • van Harten AM (1998) Mutation breeding, theory and practical application. Cambridge University Press, Cambridge UK

    Google Scholar 

  • Vanblaere T, Szankowski I, Schaart J et al (2011) The development of a cisgenic apple plant. J Biotechnol 154:304–311

    Article  CAS  PubMed  Google Scholar 

  • Vanblaere T, Flachowsky H, Gessler C, Giovanni AL (2014) Molecular characterization of cisgenic lines of apple ‘Gala’ carrying the Rvi6 scab resistance gene. Plant Biotechnol J 12:2–9

    Article  CAS  PubMed  Google Scholar 

  • Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile wheat transgenic plants obtained by microprojectile bombardment of regenerable embryogenic callus. Biotechnol 10:67

    Article  Google Scholar 

  • Weeks JT, Ye J, Rommens CM (2008) Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Res 17:587–597

    Article  CAS  PubMed  Google Scholar 

  • Woo HJ, Cho HS, Lim SH, Shin KS, Lee SM, Lee KJ, Kim DH, Cho YG (2009) Autoexcision of selectable marker genes from transgenic tobacco via a stress inducible FLP/FRT site-specific recombination system. Transgenic Res 18:455–465

    Article  CAS  PubMed  Google Scholar 

  • Woo HJ, Suh SC, Cho YG (2011) Strategies for developing marker-free transgenic plants. Biotech Bioproc Eng 16(6):1053–1064

    Article  CAS  Google Scholar 

  • Wu KM (2007) Monitoring and management strategy for Helicoverpa armigera resistance to Bt cotton in China. J Invertebr Pathol 95:220–223

    Article  PubMed  Google Scholar 

  • Yang SH, Moran DL, Jia HW et al (2002) Expression of a synthetic porcine alpha-lactalbumin gene in the kernels of transgenic maize. Transgenic Res 11:11–20

    Article  PubMed  Google Scholar 

  • Ye X, Al-Babili S, Klöti A et al (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287(5451):303–305

    Article  CAS  PubMed  Google Scholar 

  • Young TE, Giesler-Lee J, Gallie DR (2004) Senescence-induced expression of cytokinin reverses pistil abortion during maize flower development. Plant J 38:910–922

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Ao G (1997) Expression of 10 kDa sulfur-rich prolamin gene of rice in potato. Acta Bot Sin 39:329–334

    CAS  Google Scholar 

  • Zuo J, Niu QW, Moller SG, Chua NH (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lamalakshmi Devi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, A., Joshi, M., Devi, E.L. (2015). Alternative to Transgenesis: Cisgenesis and Intragenesis. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Springer, Cham. https://doi.org/10.1007/978-3-319-22521-0_12

Download citation

Publish with us

Policies and ethics