Skip to main content

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 10))

  • 1559 Accesses

Abstract

The development of isotopic age determination methods and stable isotopic tracers to paleo-climate investigations, including oxygen (δ18O), sulphur (δ33S) and carbon (δ13C), integrated with Sedimentological records and organic and biological proxies studies, allows vital insights into the composition of early atmosphere–ocean-biosphere system, suggesting low atmospheric oxygen, high levels of greenhouse gases (CO2, CO, CH4 and likely H2S), oceanic anoxia and high acidity, limiting habitats to single-cell methanogenic and photosynthesizing autotrophs. Increases in atmospheric oxygen have been related to proliferation of phytoplankton in the oceans, likely about ~2.4 Ga (billion years-ago) and 0.7–0.6 Ga. The oldest recorded indirect traces of biogenic activity are provided by dolomite and banded iron formation (BIF) from ~3.85 Ga-old Akilia and 3.71–3.70 Ga Isua greenstone belt, southwest Greenland, where metamorphosed banded ironstones and dolomite seawater-like REE and Y signatures (Bolhar et al. Earth Planet Sci Lett 222:43–60, 2004; Friend et al. Contrib Miner Petrol 183(4):725–737, 2007) were shown to be consistent with those of sea water (Nutman et al. Precamb Res 183:725–737, 2010). Oldest possible micro-fossils occur in ~3.49 Ga black chert in the central Pilbara Craton (Glikson. Aust J of Earth Sci 55:125–139, 2008; Glikson. Icarus 207:39–44, 2010; Duck et al. Geochim Cosmochim Acta 70:1457–1470, 2008; Golding et al. Earliest seafloor hydrothermal systems on earth: comparison with modern analogues. In: Golding S, Glikson MV (eds) Earliest life on earth: habitats, environments and methods of detection. Springer, Dordrecht, pp 1–15, 2010) and in 3.465 Ga brecciated chert (Schopf et al. Precamb Res 158:141–155, 2007). Possible stromatolites occur in ~3.49 and ~3.42 carbonates. The evidence suggests life may have developed around fumaroles in the ancient oceans as soon as they formed. The evidence indicates extended atmospheric greenhouse periods interrupted by glacial periods which led to an increase in oxygen solubility in water, with implications for enhanced life. Intermittent volcanic eruptions and asteroid and comet impacts, representing continuation of the Late Heavy Bombardment as recorded on the Moon, resulted in major crises in biological evolution.

Ancient Water

No one

Was there to hear

The muffled roar of an earthquake

Nor anyone who froze with fear

Of rising cliffs, eclipsed deep lakes

And sparkling comet-lit horizons

Brighter than one thousand suns

That blinded no one’s vision

No one

Stood there in awe

Of an angry black coned volcano

Nor any pair of eyes that saw

Red streams eject from inferno

Plumes spewing out of Earth

And yellow sulphur clouds

Choking no one’s breath

No one

Was numbed by thunder

As jet black storms gathered

Nor anyone was struck asunder

By lightning, when rocks shuttered

Engulfed by gushing torrents

That drowned the smouldering ashes

Which no one was to lament

In time

Once again an orange star rose

Above a sleeping archipelago

Sun rays breaking into blue depth ooze

Waves rippling sand’s ebb and flow

Receding to submerged twilight worlds

Where budding algal mats

Declare life

On the young Earth

(By Andrew Glikson)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allwood AC, Walter MR, Burch IW, Kamber BS (2007) 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem-scale insights to early life on Earth. Precambrian Res 158:198–227

    Article  Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extra-terrestrial cause for the cretaceous-tertiary extinction: experimental results and theoretical interpretation. Science 208:1095–11086

    Article  Google Scholar 

  • Barclay RS, McElwain JC, Sageman B (2010) Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event. Nat Geosci 3:205–208

    Article  Google Scholar 

  • Bard E, Frank M (2006) Climate change and solar variability: what’s new under the sun? Earth Planet Sci Lett 248:1–14

    Article  Google Scholar 

  • Beerling DJ (2002a) CO2 and the end-Triassic mass extinction. Nature 415:386–387

    Article  Google Scholar 

  • Beerling DJ, Berner RA (2005) Feedbacks and the coevolution of plants and atmospheric CO2. Proc Natl Acad Sci U S A 102:1302–1305

    Article  Google Scholar 

  • Beerling DJ, Royer D (2011) Convergent cenozoic CO2 history. Nat Geosci 4:418–420

    Article  Google Scholar 

  • Beerling DJ, Osborne CP, Chaloner WG (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410:352–354

    Article  Google Scholar 

  • Beerling DJ, Lomax BH, Royer DL, Upchurch GR, Kump LR (2002) An atmospheric pCO2 reconstruction across the cretaceous-tertiary boundary from leaf mega fossils. Proc Natl Acad Sci U S A 99:7836–7840

    Article  Google Scholar 

  • Bekker A, Kaufman AJ (2007) Oxidative forcing of global climate change: a biogeochemical record across the oldest Paleoproterozoic ice age in North America. Earth Planet Sci Lett 258:486–499

    Article  Google Scholar 

  • Berger WH, Jansen E (1994) Mid-Pleistocene climate shift: the Nansen connection. In: Johannessen O, Muench R, Overland J (eds) The polar oceans and their role in shaping the global environment, Geophys Mono 85. American Geophysical Union, Washington, DC, pp 295–311

    Chapter  Google Scholar 

  • Berner RA (1999) Atmospheric oxygen over Phanerozoic time. Proc Natl Acad Sci U S A 96:10955–10957

    Article  Google Scholar 

  • Berner RA (2004) The Phanerozoic carbon cycle: CO2 and O2. Oxford University Press, New York

    Google Scholar 

  • Berner RA (2005) The carbon and sulphur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochim Cosmochim Acta 69:3211–3217

    Article  Google Scholar 

  • Berner RA (2006) GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim Cosmochim Acta 70:5653–5664

    Article  Google Scholar 

  • Berner RA (2009) Phanerozoic atmospheric oxygen new results using the GEOCARBSULF model. Am J Sci 309:603–606

    Article  Google Scholar 

  • Berner RA, Beerling DJ, Dudley R, Robinson JM, Wildman RA (2003) Phanerozoic atmospheric oxygen. Ann Rev Earth Planet Sci 31:105–134

    Article  Google Scholar 

  • Berner RA, Vanderbrook JM, Ward PD (2007) Oxygen and evolution. Science 316:557–558

    Article  Google Scholar 

  • Blake RE, Chang SJ, Lepland A (2010) Phosphate oxygen isotope evidence for a temperate and biologically active Archaean ocean. Nature 464:1029–1033

    Article  Google Scholar 

  • Bolhar R, Kamber BS, Moorbath S, Fedo CM, Whitehouse MJ (2004) Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet Sci Lett 222:43–46

    Article  Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81

    Article  Google Scholar 

  • Breecker DO, Sharp ZD, McFadden LD (2009) Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for A.D. 2100. Proc Natl Acad Sci U S A 107:576–580

    Article  Google Scholar 

  • Broecker WS (2000) Abrupt climate change: causal constraints provided by the paleoclimate record. Earth Sci Rev 51:137–154

    Article  Google Scholar 

  • Browning JV, Miller KG, Pak DK (1996) Global implications of lower to middle Eocene sequence boundaries on the New Jersey coastal plain: the icehouse cometh. Geology 24:639–642

    Article  Google Scholar 

  • Byerly GR, Lowe DR (1994) Spinels from Archaean impact spherules. Geochim Cosmochim Acta 58:3469–3486

    Article  Google Scholar 

  • Cairns-Smith AG (1978) Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature 276:807–808

    Article  Google Scholar 

  • Cairns-Smith AG (1990) Seven clues to the origin of life. Cambridge University Press, Cambridge. ISBN 9780521398282

    Google Scholar 

  • Canfield D, Poulton SW, Narbonne GM (2007) Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315:92–95

    Article  Google Scholar 

  • Chandler M, Dowsett H, Haywood A (2008) The PRISM model/data cooperative: mid-pliocene data-model comparisons. PAGES News, 16 No 2

    Google Scholar 

  • Chyba CF (1993) The violent environment of the origin of life: progress and uncertainties. Geochim Cosmochim Acta 57:3351–3358

    Article  Google Scholar 

  • Chyba CF, Sagan C (1996) Comets as the source of prebiotic organic molecules for the early earth. In: Thomas PJ, Chyba CF, McKay CP (eds) Comets and the origin and evolution of life. Springer, New York, pp 147–174

    Google Scholar 

  • Cloud P (1968) Atmospheric and hydrospheric evolution of the primitive. Earth Sci 160:729–738

    Google Scholar 

  • Cloud P (1973) Paleoecological significance of the banded iron formation. Econ Geol 68:1135–1143

    Article  Google Scholar 

  • Cortese G, Abelmann A, Gersonde A (2007) The last five glacial-interglacial transitions: a high resolution 450,000-year record from the subantarctic Atlantic. Paleoocean 22:PA4203

    Article  Google Scholar 

  • Crowley JC (1999) Pre-Mesozoic ice ages: their bearing on understanding the climate system. Geological Society of America, Boulder

    Google Scholar 

  • Crowley TJ, Berner RA (2001) CO2 and climate change. Science 292:870–872

    Article  Google Scholar 

  • Cui Y, Kump LR, Ridgwell AJ, Charles AJ, Junium CK, Diefendorf AF, Freeman KH, Urban NM, Harding IC (2011) Slow release of fossil carbon during the Palaeocene–Eocene thermal maximum. Nat Geosci 4:481–485

    Article  Google Scholar 

  • Dakos V, Scheffer M, Van Nes EH, Brovkin V, Petoukhov V, Held H (2008) Slowing down as an early warning signal for abrupt climate change. Proc Natl Acad Sci U S A 105:14308–14312

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species. John Murray, London

    Google Scholar 

  • Dauphas N, van Zullen M, Wadhawa M, Davies AM, Marry B, Janney P (2004) Clues from Fe isotope variations on the origin of early Archaean BIFs from Greenland. Science 306:2077–2080

    Article  Google Scholar 

  • Davies PCW (1998) The fifth miracle. Penguin Books, London

    Google Scholar 

  • Deino AL, Kingston JD, Glen JM, Edgar RK, Hill A (2006) Precessional forcing of lacustrine sedimentation in the late Cenozoic Chemeron basin, central Kenya rift, and calibration of the Gauss/Matuyama boundary. Earth Planet Sci Lett 247:41–60

    Article  Google Scholar 

  • deMenocal PB (2004) African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet Sci Lett 220:3–24

    Article  Google Scholar 

  • Duck LJ, Glikson M, Golding SD, Webb R, Riches J, Baiano J, Sly L (2008) Geochemistry and nature of organic matter in 35 Ga rocks from Western Australia. Geochim Cosmochim Acta 70:1457–1470

    Google Scholar 

  • Dunlop JSR, Buick R (1981) Archaean epiclastic sediments derived from mafic volcanics, North Pole, Pilbara Block, Western Australia. Geol Soc Aust Sp Pub 7:225–233

    Google Scholar 

  • Dunlop JSR, Muir MD, Milne VA, Groves DI (1978) A new microfossil assemblage from the Archaean of Western Australia. Nature 274:676–678

    Article  Google Scholar 

  • Eigenbrode JL, Freeman KH (2006) Late Archaean rise of aerobic microbial ecosystems. Proc Natl Acad Sci U S A 103:15759–15764

    Article  Google Scholar 

  • EPICA Community Members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628

    Article  Google Scholar 

  • Eugster HP (1966) Sodium carbonate-bicarbonate minerals as indicators of PCO2. J Geophys Res 71:3369–3378

    Article  Google Scholar 

  • Eyles N (1993) Earth’s glacial record and its tectonic setting. Earth Sci Rev 35:1–248

    Article  Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulphur cycle. Science 289:756

    Article  Google Scholar 

  • Farquhar J, Peters M, Johnston DT, Strauss H, Masterson A, Wiechert U, Kaufman AJ (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449:706–709

    Article  Google Scholar 

  • Feakins SJ, deMenocal PB, Eglinton TI (2005) Biomarker records of late Neogene changes in northeast African vegetation. Geology 33:977–980

    Article  Google Scholar 

  • Fedorov AV, Dekens PS, McCarthy M, Ravelo AC, deMenocal PB, Barreuri M, Pacanowski RC, Philander SG (2006) The Pliocene Paradox. Science 312:1485–1489

    Article  Google Scholar 

  • Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the Phanerozoic. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Friend CRL, Bennett VC, Nutman AP, Norman M (2007) Seawater-like trace element signatures (REE + Y) of Eoarchaean chemical sedimentary rocks from southern West Greenland, and their corruption during high-grade metamorphism. Contrib Mineral Petrol 183(4):725–737

    Google Scholar 

  • Ganopolski A, Rahmstorf S (2002) Abrupt glacial climate changes due to stochastic resonance. Phys Rev Lett 88:3–6

    Article  Google Scholar 

  • Garrells RM, Perry EM, MacKenzie FT (1973) Genesis of Precambrian banded iron formations and the development of atmospheric oxygen. Econ Geol 68:1173–1179

    Article  Google Scholar 

  • Glikson AY (1972) Early Precambrian evidence of a primitive ocean crust and island nuclei of sodic granite. Geol Soc Am Bull 83:3323–3344

    Article  Google Scholar 

  • Glikson AY (1980) Uniformitarian assumptions, plate tectonics and the precambrian earth. In: Kroner A (ed) Precambrian plate tectonics. Elsevier, Amsterdam, pp 91–104

    Google Scholar 

  • Glikson AY (1984) Significance of early Archaean mafic–ultramafic xenolith patterns. In: Kroner A, Goodwin AM, Hanson GN (eds) Archaean geochemistry. Springer, Berlin, pp 263–280

    Google Scholar 

  • Glikson AY (2001) The astronomical connection of terrestrial evolution crustal effects of post-3.8 Ga mega-impact clusters and evidence for major 3.2 Ga bombardment of the Earth–Moon system. J Geodyn 32:205–229

    Article  Google Scholar 

  • Glikson AY (2004) Early Precambrian asteroid impact-triggered tsunami: excavated seabed debris flows exotic boulders and turbulence features associated with 3.47–2.47 Ga-old asteroid impact fallout units, Pilbara Craton, Western Australia. Astrobiology 4:1–32

    Article  Google Scholar 

  • Glikson AY (2005) Asteroid/comet impact clusters, flood basalts and mass extinctions: significance of isotopic age overlaps. Earth Planet Sci Lett 236:933–937

    Article  Google Scholar 

  • Glikson AY (2006) Asteroid impact ejecta units overlain by iron-rich sediments in 3.5–2.4 Ga terrains, Pilbara and Kaapvaal cratons: accidental or cause–effect relationships? Earth Planet Sci Lett 246:149–160

    Article  Google Scholar 

  • Glikson AY (2008) Milestones in the evolution of the atmosphere with reference to climate change. Aust J Earth Sci 55:125–139

    Article  Google Scholar 

  • Glikson AY (2010) Archaean asteroid impacts, banded iron formations and MIF-S anomalies: a discussion. Icarus 207:39–44

    Article  Google Scholar 

  • Glikson AY (2013a) The asteroid impact connection of planetary evolution. Springer Briefs, Dordrecht, 149 pp

    Book  Google Scholar 

  • Glikson AY, Vickers J (2006) The 3.26–3.24 Ga Barberton asteroid impact cluster: tests of tectonic and magmatic consequences, Pilbara Craton, Western Australia. Earth Planet Sci Lett 241:11–20

    Article  Google Scholar 

  • Glikson AY, Vickers J (2007) Asteroid mega-impacts and Precambrian banded iron formations: 2.63 Ga and 2.56 Ga impact ejecta/fallout at the base of BIF/argillite units, Hamersley Basin, Pilbara Craton, Western Australia. Earth Planet Sci Lett 254:214–226

    Article  Google Scholar 

  • Glikson AY, Allen C, Vickers J (2004) Multiple 3.47-Ga-old asteroid impact fallout units, Pilbara Craton, Western Australia. Earth Planet Sci Lett 221:383–396

    Article  Google Scholar 

  • Glikson M, Duck LJ, Golding SD, Hofmann A, Bolhar R, Webb R, Baiano JCF, Sly LI (2008) Microbial remains in some earliest Earth rocks: comparison with a potential modern analogue. Precambrian Res 164:187–200

    Article  Google Scholar 

  • Glikson AY, Jablonski D, Westlake S (2010) Origin of the Mt Ashmore structural dome, west Bonaparte Basin, Timor Sea. Aust J Earth Sci 57:411–430

    Article  Google Scholar 

  • Gold T (1999) The deep hot biosphere. Springer, New York, 235 pp

    Book  Google Scholar 

  • Goldblatt C, Zahnle KJ (2011) Clouds and the faint young sun paradox. Clim Past 7:203–220

    Article  Google Scholar 

  • Goldblatt C, Claire MW, Lenton TM, Matthews AJ, Watson AJ, Zahnle KJ (2009) Nitrogen-enhanced greenhouse warming on early Earth. Nat Geosci 2:891–896

    Article  Google Scholar 

  • Golding D, Glikson M (2010) Earliest life on Earth: habitats, environments and methods of detection. Springer, Dordrecht, 316 pp

    Google Scholar 

  • Golding SD, Duck LJ, Young E, Baublys KA, Glikson M (2011) Earliest sea floor hydrothermal systems on earth: comparison with modern analogues. In: Golding S, Glikson MV (eds) Earliest life on earth: habitats, environments and methods of detection. Springer, Dordrecht, pp 1–15

    Chapter  Google Scholar 

  • Goodwin AM, Monster J, Thode HG (1976) Carbon and sulphur isotope abundances in Archaean iron-formations and early Precambrian life. Econ Geol 71:870–891

    Article  Google Scholar 

  • Gould SJ (1990) Wonderful life: the burgess shale and the nature of history. W W Norton & Company, Newport Beach, 347 pages

    Google Scholar 

  • Halverson GP, Hoffman PF, Schrag DP, Maloof AC, Adam C, Hugh A, Rice N (2005) Toward a neoproterozoic composite carbon-isotope record. GSA Bull 117:1181–1207

    Article  Google Scholar 

  • Hansen J, Sato M, Kharecha P, Lea DW, Siddall M (2007) Climate change and trace gases. Phil Trans Roy Soc 365A:1925–1954

    Article  Google Scholar 

  • Hansen J, Sato M, Kharecha P, Beerling D, Masson-Delmotte V, Pagani M, Raymo M, Royer DL, Zachos JC (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci J 2:217–231

    Article  Google Scholar 

  • Hessler AM (2012) Earth’s earliest climate. Nature Educ Knowl 3(10):24. http://www.nature.com/scitable/knowledge/library/earth-s-earliest-climate-24206248

  • Hessler AM et al (2004) A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago. Nature 428:736–738

    Article  Google Scholar 

  • Heubeck C (2009) An early ecosystem of Archaean tidal microbial mats (Moodies group, South Africa, ca. 3.2 Ga). Geology 37:931–934

    Article  Google Scholar 

  • Hoffman PF, Schrag DP (2000) Snowball Earth. Sci Am 282:68–75

    Article  Google Scholar 

  • Hoffman PF, Schrag DP (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14:129–155

    Article  Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A Neoproterozoic snowball Earth. Science 281:1342–1346

    Article  Google Scholar 

  • Hoffman PF, Halverson GP, Domack JM, Husson JA, Higgins D, Schrag DP (2007) Are basal Ediacaran (635 Ma) post-glacial “cap dolostones” diachronous? Earth Planet Sci Lett 258:114–131

    Article  Google Scholar 

  • Hoffman HJ, Grey K, Hickman AH, Thorpe RI (1999) Origin of 3.45 Ga coniform stromatolites in the Warrawoona Group, Western Australia. Bull Geol Soc Am 111:1256–1262

    Article  Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Phil Tran Roy Soc B: Biol Sci 361:903–915

    Article  Google Scholar 

  • Hren MT, Tice MM, Chamberlain CP (2009) Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago. Nature 205:205–208

    Article  Google Scholar 

  • Isbell JL, Miller MF, Wolfe KL, Lenaker PA (2003) Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of northern hemisphere cyclothems? In: Chan MA, Archer AW (eds) Extreme depositional environments: mega end members in geologic time. Geological Society of America, Boulder, pp 5–24

    Chapter  Google Scholar 

  • Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926

    Article  Google Scholar 

  • Kasting JF, Ono S (2006) Palaeoclimates: the first two billion years. Philos Trans R Soc Biol Sci 361:917–929

    Article  Google Scholar 

  • Keller G (2005) Impacts volcanism and mass extinction: random coincidence or cause and effect? Aust J Earth Sci 52:725–757

    Article  Google Scholar 

  • Kharecha P, Kasting J, Seifert JA (2005) A coupled atmosphere-ecosystem model of the early Archaean earth. Geobiology 3:53–76

    Article  Google Scholar 

  • Kirschvink JL (1992) Chapter 2.3: Low-latitude Late Proterozoic global glaciation: the snowball Earth. In: Schopf JW, Klein C, and deMaris (eds) The Proterozoic biosphere. Cambridge University Press, New York, pp 51–52

    Google Scholar 

  • Klein R (2009) The human career: human biological and cultural origins. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Knauth LP (2005) Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeogr Palaeoclimatol Palaeoecol 219:53–69

    Article  Google Scholar 

  • Knauth LP, Lowe DR (2003) High Archaean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. GSA Bull 115(5):566–580

    Article  Google Scholar 

  • Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Phil Trans R Soc London Part B 361:1023–1038

    Article  Google Scholar 

  • Konhausser K, Hamada T, Raiswell R, Morris R, Ferris F, Southam G, Canfield D (2002) Could bacteria have formed the Precambrian banded iron-formations? Geology 30:1079–1082

    Article  Google Scholar 

  • Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci U S A 102:11131–11136

    Article  Google Scholar 

  • Kreidenweis SM, Seinfeld JH (1988) Nucleation of sulphuric acid-water and methanesulphonic acid-water solution particles: implications for the atmospheric chemistry of organosulphur species. Atmos Environ 22:283–296

    Article  Google Scholar 

  • Kump LR (2009) The rise of atmospheric oxygen. Nature 451:277–278

    Article  Google Scholar 

  • Kump LR, Arthur MA, Patzkowsky ME, Gibbs MT, Pinkus DS, Sheenan PM (1999) A weathering hypothesis for glaciation at high atmospheric pCO2 during the late Ordovician. Palaeoclimatol Palaeogeogr Palaeoecol 152:173–187

    Article  Google Scholar 

  • Kyte FT, Shukolyukov A, Lugmair GW, Lowe DR, Byerly GR (2003) Early Archaean spherule beds: chromium isotopes confirm origin through multiple impacts of projectiles of carbonaceous chondrite type. Geology 31:283–286

    Article  Google Scholar 

  • Lewis CFM, Miller AAL, Levac E, Piper DJW, Sonnichsen GV (2012) Lake Agassiz outburst age and routing by labrador current and the 8.2 ka cold event. Quat Int 260:83–97

    Article  Google Scholar 

  • Liu Z et al (2009) Global cooling during the Eocene-Oligocene climate transition. Science 323:1187–1190

    Article  Google Scholar 

  • Longdoz B, Francois LM (1997) The faint young sun climatic paradox: influence of the continental configuration and of the seasonal cycle on the climatic stability. Global Planet Change 14:97–112

    Article  Google Scholar 

  • Lowe DR (1980) Stromatolites 3,400-Myr old from the Archaean of Western Australia. Nature 284:441–443

    Article  Google Scholar 

  • Lowe DR (1983) Restricted shallow water sedimentation of early Archaean stromatolitic and evaporitic strata of the strelley pool chert, Pilbara Block, Western Australia. Precambrian Res 19:239–283

    Article  Google Scholar 

  • Lowe DR (1994) Abiological origin of described stromatolites older than 3.2 Ga. Geology 22:387–390

    Article  Google Scholar 

  • Lowe DR, Tice MM (2004) Geologic evidence for Archaean atmosphere and climatic evolution: fluctuating levels of CO2, CH4, and O2 with an overriding tectonic control. Geology 32:493–496

    Article  Google Scholar 

  • Lowe DR, Byerly GR, Asaro F, Kyte FJ (1989) Geological and geochemical record of 3400 million year old terrestrial meteorite impacts. Science 245:959–962

    Article  Google Scholar 

  • Lowe DR, Byerly GR, Kyte FT, Shukolyukov A, Asaro F, Krull A (2003) Characteristics, origin, and implications of Archaean impact-produced spherule beds, 3.47–3.22 Ga, in the barberton greenstone belt, South Africa: keys to the role of large impacts on the evolution of the early Earth. Astrobiology 3:7–48

    Article  Google Scholar 

  • Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6:805–814

    Google Scholar 

  • Maslin MA, Christensen B (2007) Tectonics, orbital forcing, global climate change, and human evolution in Africa: introduction to the African paleoclimate special volume. J Hum Evol 53(5):443–464

    Article  Google Scholar 

  • Maslin MA, Trauth MH (2006) Plio-Pleistocene East African pulsed climate variability and its influence on early human evolution. In: Grine FE, Fleagle JG, Leakey JG (eds) The first humans – origin and early evolution of the genus Homo. Springer. doi:10.1007/978-1-4020-9980-9

    Google Scholar 

  • Maslin MA, Trauth MH (2009) Plio-pleistocene East African pulsed climate variability and its influence on early human evolution. In: The first humans – origin and early evolution of the genus homo. Verteb Paleobiology Paleoanthropology, 151–158

    Google Scholar 

  • Mather TA, Pyle DM, Allen AG (2004) Volcanic source for fixed nitrogen in the early Earth’s atmosphere. Geology 32:905–908

    Article  Google Scholar 

  • McCollom TM, Seewald JS (2006) Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet Sci Lett 243:74–84

    Article  Google Scholar 

  • McCulloch MT, Bennett VC (1994) Progressive growth of the Earth’s continental crust and depleted mantle: geochemical constraints. Geochim Cosmochim Acta 58:4717–4738

    Article  Google Scholar 

  • Melosh HJ, Vickery AM (1991) Melt droplet formation in energetic impact events. Nature 350:494–497

    Article  Google Scholar 

  • Miller KG, Wright JD, Katz ME, Wade BS, Browning JV, Cramer BS, Rosenthal Y (2009) Climate threshold at the Eocene-Oligocene transition: Antarctic ice sheet influence on ocean circulation. In: Koeberl C, Montanari A (eds) The late Eocene earth—Hothouse, Icehouse, and Impacts. Geol Soc Am Sp Pap 452:1–10

    Google Scholar 

  • Mojzsis SJ (2007) Sulphur on the early Earth. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks, vol 15, Developments in precambrian geology. Elsevier, Amsterdam, pp 923–970

    Chapter  Google Scholar 

  • Mojzsis SJ, Harrison TM (2000) “Vestiges of a beginning” clues to the emergent biosphere recorded in the oldest known rocks. GSA Today 10:1–6

    Google Scholar 

  • Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Friend CRL (1996) Evidence for life on Earth before 3800 million years ago. Nature 270:43–45

    Google Scholar 

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409:178–181

    Article  Google Scholar 

  • Morris RC (1993) Genetic modeling for banded iron-formation of the Hamersley group, Pilbara Craton, Western Australia. Precambrian Res 60:243–286

    Article  Google Scholar 

  • Noffke N et al (2006) A new window into early Archaean life: microbial mats in earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34:253–256

    Article  Google Scholar 

  • Noffke N, Christian D, Wacey D, Hazen RM (2013) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old dresser formation, Pilbara, Western Australia. Astrobiology 13(12):1103–1124

    Article  Google Scholar 

  • Nutman AP, Friend CRL (2006) Re-evaluation of oldest life evidence: infrared absorbance spectroscopy and petrography of apatites in ancient metasediments, Akilia, W. Greenland. Precambrian Res 147:100–106

    Article  Google Scholar 

  • Nutman AP, Clark Friend RL, Bennett VC, Wright D, Norman MD (2010) 3700 Ma premetamorphic dolomite formed by microbial mediation in the Isua supracrustal belt (W. Greenland): simple evidence for early life? Precambrian Res 183:725–737

    Article  Google Scholar 

  • Ohmoto H, Watanabe Y, Ikemi H, Poulson SR, Taylor BE (2006) Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442:908–911

    Article  Google Scholar 

  • Oparin AI (1924) The origin of life. Moscow Workers Publisher (in Russian). Translation: The origin of life. Dover, New York, 1952

    Google Scholar 

  • Overpeck J, Bette T, Otto-Bliesner L, Gifford H, Mille M, Daniel RM, Alley RB, Kiehl JT (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311:1747–1750

    Article  Google Scholar 

  • Pavlov AA, Kasting JF (2002) Mass-independent fractionation of sulphur isotopes in Archaean sediments: strong evidence for an anoxic Archaean atmosphere. Astrobiology 2:27–41

    Article  Google Scholar 

  • Pearson PN, Foster GL, Wade BS (2009) Atmospheric carbon dioxide through the Eocene–Oligocene climate transition. Nature 461:1110–1113

    Article  Google Scholar 

  • Perry EC, Ahmed SN (1977) Carbon isotope composition of graphite and carbonate minerals from 3.8-AE metamorphosed sediments, Isukasia, Greenland. Earth Planet Sci Lett 36:280–284

    Article  Google Scholar 

  • Petit JR et al (1999) 420,000 years of climate and atmospheric history revealed by the Vostok deep Antarctic ice core. Nature 399:429–436

    Article  Google Scholar 

  • Pidgeon RT (2014) Zircon radiation damage ages. Chem Geol 367:13–22

    Article  Google Scholar 

  • Pidgeon RT, Nemchin A, Cliff J (2013) Interaction of weathering solutions with oxygen and U–Pb isotopic systems of radiation-damaged zircon from an Archaean granite, Darling Range Batholith, Western Australia. Contrib Mineral Petrol 166:511–523

    Article  Google Scholar 

  • Pollard D, DeConto RM (2005) Hysteresis in Cenozoic Antarctic ice sheet variations. Glob Planet Change 45:9–21

    Article  Google Scholar 

  • Potts R (1998) Environmental hypothesis of hominin evolution. Yearb Phys Anthrop 41:93–136

    Article  Google Scholar 

  • Price GD (1999) The evidence and implications of polar ice during the Mesozoic. Earth Sci Rev 48:183–210

    Article  Google Scholar 

  • Pross A (2004) Causation and the origin of life: metabolism or replication first? Origins Life Evol Bios 34:307–321

    Article  Google Scholar 

  • Rahmstorf S, Stocker TF (2004) Thermohaline circulation: past changes and future surprises? Box 5.6 in global change, The IGBP series 2005, pp 240–241. http://www.pik-potsdam.de/~Stefan/Publications/Book_chapters/rahmstorf&stocker_2004.pdf

  • Roberts JA, Bennett PC, González LA, Macpherson GL, Milliken KL (2004) Microbial precipitation of dolomite in methanogenic groundwater. Geology 32:277–280

    Article  Google Scholar 

  • Roe G (2006) In defence of Milankovitch. Geophys Res Lett 33:L24703

    Article  Google Scholar 

  • Rose NM, Rosing M, Bridgwater D (1996) The origin of metacarbonate rocks in the Archaean Isua supracrustal belt, West Greenland. Am J Sci 296:1004–1044

    Article  Google Scholar 

  • Rosing MT (1999) 13C-depleted carbon microparticles in >3700-Ma sea-fl oor sedimentary rocks from West Greenland. Science 283:674–676

    Article  Google Scholar 

  • Rosing MT, Bird DK, Sleep NH, Bjerrum CJ (2010) No climate paradox under the faint early Sun. Nature 464:744–749

    Article  Google Scholar 

  • Royer DL (2006) CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta 70:5665–5675

    Article  Google Scholar 

  • Royer DL (2008) Linkages between CO2, climate, and evolution in deep time. Proc Natl Acad Sci U S A 105:407–408

    Article  Google Scholar 

  • Royer DL, Berner RA, Beerling DJ (2001) Phanerozoic atmospheric CO change: evaluating geochemical and paleobiological approaches. Earth-Sci Rev 54:349–392

    Article  Google Scholar 

  • Royer DL, Berner RA, Montañez I, Neil P, Tabor J, Beerling DJ (2004) CO2 as a primary driver of Phanerozoic climate. GSA Today 14:3

    Google Scholar 

  • Royer DL, Berner RA, Park J (2007) Climate sensitivity constrained by CO2 concentrations over the past 420 million years. Nature 446:530–532

    Article  Google Scholar 

  • Ruddiman WF (1997) Tectonic uplift and climate change. Plenum Press, New York, 535 pp

    Book  Google Scholar 

  • Ruddiman WF (2003) Orbital insolation, ice volume, and greenhouse gases. Quat Sci Rev 22:1597–1629

    Article  Google Scholar 

  • Ruddiman WF (2008) Earth’s climate, past and future, 2nd edn. WH Freeman, New York. ISBN 978-0-7167-8490-6

    Google Scholar 

  • Russell MJ, Hall AJ (2006) The onset and early evolution of life. Geol Soc Am Mem 198:1–32

    Google Scholar 

  • Ryder G (1991) Accretion and bombardment in the Earth–Moon system: the lunar record. Lunar Planet Sci Instit Contrib 746:42–43

    Google Scholar 

  • Sagan C, Mullen G (1972) Earth and mars: evolution of atmospheres and surface temperatures. Science 177:52–56

    Article  Google Scholar 

  • Schidlowski M, Appel PWU, Eichmann R, Junge CE (1979) Carbon isotope geochemistry of the 3.7 × 109-years old Isua sediments, West Greenland: implications for the Archaean carbon and oxygen cycles. Geochim Cosmochim Acta 43:189–199

    Article  Google Scholar 

  • Schopf JW, Packer BM (1987) Early Archaean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73

    Article  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Czaja AD, Tripathi AB (2007) Evidence of Archaean life: stromatolites and microfossils. Precambrian Res 158:141–155

    Article  Google Scholar 

  • Shukolyukov A, Kyte FT, Lugmair GW, Lowe DR, Byerly GR (2000) The oldest impact deposits on Earth. In: Koeberl C, Gilmour I (eds) Lecture notes in Earth science 92: impacts and the early Earth. Springer, Berlin, pp 99–116

    Google Scholar 

  • Siegenthaler U et al (2005) Stable carbon cycle–climate relationship during the late Pleistocene. Science 310:1313–1317

    Article  Google Scholar 

  • Simonson BM, Glass BP (2004) Spherule layers – records of ancient impacts. Ann Rev Earth Planet Sci 32:329–361

    Article  Google Scholar 

  • Simonson BM, Hassler SW (1997) Revised correlations in the early Precambrian Hamersley Basin based on a horizon of re-sedimented impact spherules. Aust J Earth Sci 44:37–48

    Article  Google Scholar 

  • Simonson BM, Davies D, Hassler SW (2000) Discovery of a layer of probable impact melt spherules in the late Archaean Jeerinah Formation, Fortescue Group, Western Australia. Aust J Earth Sci 47:315–325

    Article  Google Scholar 

  • Solanki SK (2002) Solar variability and climate change: is there a link? A&G (2002) 43(5):5.9–5.13. doi:10.1046/j.1468-4004.2002.43509.x http://astrogeo.oxfordjournals.org/content/43/5/5.9.abstract http://astrogeo.oxfordjournals.org/content/43/5/5.9.full.pdf+html

  • Steffensen JP et al (2008) High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321:680–684

    Article  Google Scholar 

  • Stevenson DJ (1987) Origin of the moon-the collision hypothesis. Ann Rev Earth Planet Sci 15:271–315

    Article  Google Scholar 

  • Strauss H, Peters-Kottig W (2003) The Paleozoic to Mesozoic carbon cycle revisited: the carbon isotopic composition of terrestrial organic matter. Geochem Geophys Geosyst 4(10):1083

    Article  Google Scholar 

  • Strik G, de Wit MJ, Langereis CG (2007) Palaeomagnetism of the Neoarchaean Pongola and Ventersdorp Supergroups and an appraisal of the 30–19 Ga apparent polar wander path of the Kaapvaal Craton, Southern Africa. Precambrian Res 153:96–115

    Article  Google Scholar 

  • Sugitania K, Grey K, Nagaokac T, Mimurad K, Walter M (2009) Taxonomy and biogenicity of Archaean spheroidal microfossils (ca 3.0 Ga) from the Mount Goldsworthy–Mount Grant area in the northeastern Pilbara Craton, Western Australia. Precambrian Res 173:50–59

    Article  Google Scholar 

  • Teaford MF, Ungar PS (2000) Diet and the evolution of the earliest human ancestors. Proc Nat Acad Sci USA 97:13506–13511

    Article  Google Scholar 

  • Thiemens MH (1999) Atmospheric science – mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283:341–345

    Article  Google Scholar 

  • Tice MM, Lowe DR (2006) Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology 34:37–40

    Article  Google Scholar 

  • Trainer MG et al (2006) Organic haze on titan and the early Earth. Proc Natl Acad Sci U S A 103:18035–18042

    Article  Google Scholar 

  • Trauth MH, Maslin MA, Deino AL, Strecker MR, Bergner AGN, Duhnforth M (2007) High- and low-latitude forcing of Plio-Pleistocene East African climate and human evolution. J Hum Evol 53:475–486

    Article  Google Scholar 

  • Trauth MH, Maslin MA, Deino AL, Junginger A, Lesoloyia M, Odada EO, Olago DO, Olaka LA, Strecker MR, Tiedemann R (2010) Human evolution in a variable environment: the amplifier lakes of Eastern Africa. Q Sci Rev 29:2981–2988

    Article  Google Scholar 

  • Valley JW (2008) The origin of habitats. Geology 36:911–912

    Article  Google Scholar 

  • Van Kranendonk MJ, Webb GE, Kamber BS (2003) Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara craton and support for a reducing archaean ocean. Geobiology 1:91–108

    Article  Google Scholar 

  • Van Kranendonk MJ (2007) Tectonics of the early earth. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks, developments in precambrian geology, vol 15. Elsevier, Amsterdam, pp 1105–1116

    Google Scholar 

  • Valley JW et al (2002) A cool early earth. Geology 30:351–354

    Article  Google Scholar 

  • Van Zuilen MA, Lepland A, Arrhenius G (2002) Reassessing the evidence for earliest traces of life. Nature 418:627–630

    Article  Google Scholar 

  • Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tien AJ (1995) Microbial mediation as a possible mechanism for natural dolomite at low temperatures. Nature 377:220–222

    Article  Google Scholar 

  • Wacey D (2012) Earliest evidence for life on Earth: an Australian perspective. Aust J Earth Sci 59:153–166

    Article  Google Scholar 

  • Wagner F, Aaby B, Visscher H (2002) Rapid atmospheric CO2 changes associated with the 8,200-years-B.P. cooling event. Proc Natl Acad Sci U S A 99:12011–12014

    Article  Google Scholar 

  • Walsh M (1992) Microfossils and possible microfossils from the early Archaean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Res 54:271–293

    Article  Google Scholar 

  • Walsh M, Lowe DR (1985) Filamentous microfossils from the 3,500 Myr-old Overwacht Group, Barberton Mountain Land, South Africa. Nature 314:530–532

    Article  Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  Google Scholar 

  • Yokoyama Y, Esat TM (2011) Global climate and sea level: enduring variability and rapid fluctuations over the past 150,000 years. Oceanography 24:54–69

    Article  Google Scholar 

  • Young GM, von Brunn V, Gold WEL, Minter DJC (1998) Earth’s oldest reported glaciation: physical and chemical evidence from the Archaean Mozoan Group (~2.9 Ga). S Africa J Geol 106:523–538

    Google Scholar 

  • Zachos JC, Breza JR, Wise SW (1992) Early oligocene ice-sheet expansion on Antarctica–stable isotope and sedimentological evidence from Kerguelen Plateau, Southern Indian Ocean. Geology 20:569–573

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  Google Scholar 

  • Zachos J, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283

    Article  Google Scholar 

  • Zahnle KJ (1986) Photochemistry of methane and formation of hydrocyanic acid (HCN) in the Earth’s early atmosphere. J Geophys Res 91:2819–2834

    Article  Google Scholar 

  • Zahnle K, Sleep NH (1997) Impacts and the early evolution of life. In: Thomas PJ, Chyba CF, McKay CP (eds) Comets and the origin and evolution of life. Springer, New York, pp 175–208

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glikson, A.Y., Groves, C. (2016). Early Earth Systems. In: Climate, Fire and Human Evolution. Modern Approaches in Solid Earth Sciences, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-22512-8_1

Download citation

Publish with us

Policies and ethics