Skip to main content

Precancerous Lesions of Squamous Cell Carcinoma of the Cervix: Squamous Dysplasia

  • Chapter
Precancerous Lesions of the Gynecologic Tract

Abstract

High-risk human papillomavirus (HPV) initiates a series of precancerous changes in the cervical squamous epithelium. If untreated, these may lead to the development of cervical carcinoma. The virally induced changes are reflected in histomorphological and immunophenotypic alterations that predict the biological behavior of the precancerous lesions. Recent years have seen clarification and more consistent application of terms used to describe these alterations and increasing convergence of diagnostic approach, culminating in the most recent terminology recommended by the Lower Anogenital Tract Squamous Terminology Standardization (LAST) project for HPV-associated lesions. This chapter covers the evolution of the current terminology, the epidemiology, and molecular biology of HPV and cervical squamous preneoplasia and the current approach to histopathological diagnosis of these lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman JJ, Albores-Saavedra J, Bostwick D, Delellis R, Eble J, Hamilton SR, et al. Precancer: a conceptual working definition – results of a Consensus Conference. Cancer Detect Prev. 2006;30:387–94.

    Article  PubMed  Google Scholar 

  2. Williams J. On cancer of the uterus: being the Harveian Lectures for 1886. London: H.K. Lewis; 1888.

    Google Scholar 

  3. Cullen TS. Cancer of the uterus. New York, NY: Appleton; 1900.

    Google Scholar 

  4. Papanicolaou GN. Diagnosis of pregnancy by cytologic criteria in catheterized urine. Proc Soc Exp Biol Med. 1948;67:247–9.

    Article  CAS  PubMed  Google Scholar 

  5. Papanicolaou GN. Diagnostic value of exfoliated cells from cancerous tissues. J Am Med Assoc. 1946;131:372–8.

    Article  CAS  PubMed  Google Scholar 

  6. Papanicolaou GN. A general survey of the vaginal smear and its use in research and diagnosis. Am J Obstet Gynecol. 1946;51:316–28.

    CAS  PubMed  Google Scholar 

  7. Nelson Jr JH, Masterson JG. Confirmatory diagnostic procedures and definitive treatment following a positive cervical smear. CA Cancer J Clin. 1964;14:46–58.

    Article  PubMed  Google Scholar 

  8. Papanicolaou GN. A survey of the actualities and potentialities of exfoliative cytology in cancer diagnosis. Ann Intern Med. 1949;31:661–74.

    Article  CAS  PubMed  Google Scholar 

  9. Buckley CH, Butler EB, Fox H. Cervical intraepithelial neoplasia. J Clin Pathol. 1982;35:1–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. International Committee on Histological Definitions, 1961. Acta Cytol. 1962;6:235–6.

    Google Scholar 

  11. Burghardt E. Premalignant conditions of the cervix. Clin Obstet Gynaecol. 1976;3:257–94.

    CAS  PubMed  Google Scholar 

  12. Koss LG. Dysplasia. A real concept or a misnomer? Obstet Gynecol. 1978;51:374–9.

    Article  CAS  PubMed  Google Scholar 

  13. Poulsen HE, Taylor CW, Sobin LH. Histological typing of female genital tract tumours. International Histological Classification of Tumours No 13. Geneva: World Health Organisation; 1975.

    Google Scholar 

  14. Fu YS, Reagan JW. Precursors of cervical cancer. Cancer Surv. 1983;2:359–82.

    Google Scholar 

  15. Fu YS, Reagan JW, Richart RM. Definition of precursors. Gynecol Oncol. 1981;12:S220–31.

    Article  CAS  PubMed  Google Scholar 

  16. Cocker J, Fox H, Langley FA. Consistency in the histological diagnosis of epithelial abnormalities of the cervix uteri. J Clin Pathol. 1968;21:67–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kirkland JA. Atypical epithelial changes in the uterine cervix. J Clin Pathol. 1963;16:150–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Govan AD, Haines RM, Langley FA, Taylor CW, Woodcock AS. The histology and cytology of changes in the epithelium of the cervix uteri. J Clin Pathol. 1969;22:383–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Richart RM. Cervical intraepithelial neoplasia. Pathol Annu. 1973;8:301–28.

    CAS  PubMed  Google Scholar 

  20. Shingleton HM, Richart RM, Wiener J, Spiro D. Human cervical intraepithelial neoplasia: fine structure of dysplasia and carcinoma in situ. Cancer Res. 1968;28:695–706.

    CAS  PubMed  Google Scholar 

  21. Barron BA, Richart RM. A statistical model of the natural history of cervical carcinoma based on a prospective study of 557 cases. J Natl Cancer Inst. 1968;41:1343–53.

    CAS  PubMed  Google Scholar 

  22. Richart RM, Barron BA. A follow-up study of patients with cervical dysplasia. Am J Obstet Gynecol. 1969;105:386–93.

    CAS  PubMed  Google Scholar 

  23. Richart RM. A theory of cervical carcinogenesis. Obstet Gynecol Surv. 1969;24:874–9.

    Article  CAS  PubMed  Google Scholar 

  24. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2:342–50.

    Article  CAS  PubMed  Google Scholar 

  25. zur Hausen H. Human papillomavirus and cervical cancer. Indian J Med Res. 2009;130:209.

    PubMed  Google Scholar 

  26. zur Hausen H. The search for infectious causes of human cancers: where and why. Virology. 2009;392:1–10.

    Article  CAS  PubMed  Google Scholar 

  27. zur Hausen H. The search for infectious causes of human cancers: where and why (Nobel lecture). Angew Chem Int Ed Engl. 2009;48:5798–808.

    Article  CAS  PubMed  Google Scholar 

  28. zur Hausen H. Papillomaviruses in the causation of human cancers – a brief historical account. Virology. 2009;384:260–5.

    Article  CAS  PubMed  Google Scholar 

  29. Robertson AJ, Anderson JM, Beck JS, Burnett RA, Howatson SR, Lee FD, et al. Observer variability in histopathological reporting of cervical biopsy specimens. J Clin Pathol. 1989;42:231–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ismail SM, Colclough AB, Dinnen JS, Eakins D, Evans DM, Gradwell E, et al. Reporting cervical intra-epithelial neoplasia (CIN): intra- and interpathologist variation and factors associated with disagreement. Histopathology. 1990;16:371–6.

    Article  CAS  PubMed  Google Scholar 

  31. Richart RM. A modified terminology for cervical intraepithelial neoplasia. Obstet Gynecol. 1990;75:131–3.

    CAS  PubMed  Google Scholar 

  32. The Bethesda System for reporting cervical/vaginal cytologic diagnoses: revised after the second National Cancer Institute Workshop, April 29–30, 1991. Acta Cytol. 1993;37:115–24.

    Google Scholar 

  33. Solomon D, Davey D, Kurman R, Moriarty A, O’Connor D, Prey M, et al. The 2001 Bethesda System: terminology for reporting results of cervical cytology. JAMA. 2002;287:2114–9.

    Article  PubMed  Google Scholar 

  34. Wright Jr TC, Cox JT, Massad LS, Carlson J, Twiggs LB, Wilkinson EJ, et al. 2001 Consensus guidelines for the management of women with cervical intraepithelial neoplasia. J Low Genit Tract Dis. 2003;7:154–67.

    Article  PubMed  Google Scholar 

  35. Crum CP. Symposium part 1: Should the Bethesda System terminology be used in diagnostic surgical pathology?: Point. Int J Gynecol Pathol. 2003;22:5–12.

    Article  PubMed  Google Scholar 

  36. Schneider V. Symposium part 2: Should the Bethesda System terminology be used in diagnostic surgical pathology?: Counterpoint. Int J Gynecol Pathol. 2003;22:13–7.

    Article  PubMed  Google Scholar 

  37. Waxman AG, Chelmow D, Darragh TM, Lawson H, Moscicki AB. Revised terminology for cervical histopathology and its implications for management of high-grade squamous intraepithelial lesions of the cervix. Obstet Gynecol. 2012;120:1465–71.

    PubMed Central  PubMed  Google Scholar 

  38. Darragh TM, Colgan TJ, Cox JT, Heller DS, Henry MR, Luff RD, et al. The Lower Anogenital Squamous Terminology Standardization Project for HPV-associated lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. J Low Genit Tract Dis. 2012;16:205–42.

    Article  PubMed  Google Scholar 

  39. Darragh TM, Colgan TJ, Cox JT, Heller DS, Henry MR, Luff RD, et al. The Lower Anogenital Squamous Terminology Standardization Project for HPV-associated lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. Arch Pathol Lab Med. 2012;136:1266–97.

    Article  PubMed  Google Scholar 

  40. Darragh TM, Colgan TJ, Thomas Cox J, Heller DS, Henry MR, Luff RD, et al. The Lower Anogenital Squamous Terminology Standardization project for HPV-associated lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. Int J Gynecol Pathol. 2013;32:76–115.

    Article  PubMed  Google Scholar 

  41. Hirschowitz L, editor. NHSCSP Publication No 10: Histopathology reporting in cervical screening – an integrated approach. 2nd ed. Sheffield: NHS Cancer Screening Programmes; 2012.

    Google Scholar 

  42. Smith JHF, Patnick J, editors. Achievable standards, benchmarks for reporting, and criteria for evaluating cervical cytopathology. 3rd ed. Sheffield: NHS Cancer Screening Programmes; 2013.

    Google Scholar 

  43. Cervical cancer statistics: Cancer Research UK. http://www.cancerresearchuk.org/cancer-info/cancerstats/types/cervix/. Accessed Sep 2015.

  44. Walboomers J, Jacobs M, Manos M, Bosch F, Kummer J, Shah K, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12–9.

    Article  CAS  PubMed  Google Scholar 

  45. Ho G, Bierman R, Beardsley L, Chang C, Burk R. Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med. 1998;338:423–8.

    Article  CAS  PubMed  Google Scholar 

  46. Human papillomavirus genomes. http://pave.niaid.nih.gov/. Accessed Sep 2015.

  47. Lorincz AT, Reid R, Jenson A, Greenberg MD, Lancaster W, Kurman RJ. Human papillomavirus infection of the cervix – relative risk associations of 15 common anogenital types. Obstet Gynecol. 1992;79:328–37.

    Article  CAS  PubMed  Google Scholar 

  48. Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, et al. The biology and life-cycle of human papillomaviruses. Vaccine. 2012;30 Suppl 5:F55–70.

    Article  CAS  PubMed  Google Scholar 

  49. Ho GY, Burk RD, Klein S, Kadish AS, Chang CJ, Palan P, et al. Persistent genital human papillomavirus infection as a risk factor for persistent cervical dysplasia. J Natl Cancer Inst. 1995;87:1365–71.

    Article  CAS  PubMed  Google Scholar 

  50. Kurman RJ, Carcangiu ML, Herrington CS, Young RH. WHO classification of tumours of the female reproductive organs. Lyon: IARC press; 2014.

    Google Scholar 

  51. Clifford GM, Smith JS, Plummer M, Munoz N, Franceschi S. Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br J Cancer. 2003;88:63–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Hebner CM, Laimins LA. Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol. 2006;16:83–97.

    Article  CAS  PubMed  Google Scholar 

  53. Moodley M, Herrington CS, Moodley J, Chetty R. The role of steroid contraceptive hormones in the pathogenesis of invasive cervical cancer: a review. Int J Gynecol Cancer. 2003;13:103–10.

    Article  CAS  PubMed  Google Scholar 

  54. Wilson VG, West M, Woytek K, Rangasamy D. Papillomavirus E1 proteins: form, function, and features. Virus Genes. 2002;24:275–90.

    Article  CAS  PubMed  Google Scholar 

  55. Longworth MS, Laimins LA. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev. 2004;68:362.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Demeret C, Garcia-Carranca A, Thierry F. Transcription-independent triggering of the extrinsic pathway of apoptosis by human papillomavirus 18 E2 protein. Oncogene. 2003;22:168–75.

    Article  CAS  PubMed  Google Scholar 

  57. Fang L, Budgeon LR, Doorbar J, Briggs ER, Howett MK. The human papillomavirus type 11 E1/\E4 protein is not essential for viral genome amplification. Virology. 2006;351:271–9.

    Article  CAS  PubMed  Google Scholar 

  58. Raj K, Berguerand S, Southern S, Doorbar J, Beard P. E1 boolean AND E4 protein of human papillomavirus type 16 associates with mitochondria. J Virol. 2004;78:7199–207.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Krawczyk E, Suprynowicz FA, Liu X, Dai Y, Hartmann DP, Hanover J, et al. Koilocytosis – a cooperative interaction between the human papillomavirus E5 and E6 oncoproteins. Am J Pathol. 2008;173:682–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Zhou J, Frazer I. Papovaviridae: capsid structure and capsid protein function. In: Lacey C, editor. Papillomavirus reviews: current research on papillomaviruses. Leeds: Leeds University Press; 1996. p. 93–100.

    Google Scholar 

  61. Massimi P, Shai A, Lambert P, Banks L. HPV E6 degradation of p53 and PDZ containing substrates in an E6AP null background. Oncogene. 2008;27:1800–4.

    Article  CAS  PubMed  Google Scholar 

  62. Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990;248:76–9.

    Article  CAS  PubMed  Google Scholar 

  63. Thomas J, Laimins L, Ruesch M. Perturbation of cell cycle control by E6 and E7 oncoproteins of human papillomaviruses. Papillomavirus Rep. 1998;9:59–64.

    Google Scholar 

  64. Filippova M, Parkhurst L, Duerksen-Hughes PJ. The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J Biol Chem. 2004;279:25729–44.

    Article  CAS  PubMed  Google Scholar 

  65. Veldman T, Liu X, Yuan H, Schlegel R. Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc Natl Acad Sci U S A. 2003;100:8211–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Jones DL, Alani RM, Münger K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev. 1997;11:2101–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz JW, Jansen-Dürr P. Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene. 1996;13:2323–30.

    CAS  PubMed  Google Scholar 

  68. Klaes R, Benner A, Friedrich T, Ridder R, Herrington CS, Jenkins D, et al. p16INK4a immunohistochemistry improves interobserver agreement in the diagnosis of cervical intraepithelial neoplasia. Am J Surg Pathol. 2002;26:1389–99.

    Article  PubMed  Google Scholar 

  69. Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petry U, et al. Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer. 2001;92:276–84.

    Article  CAS  PubMed  Google Scholar 

  70. Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S, et al. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci U S A. 2000;97:10002–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Duensing S, Münger K. Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int J Cancer. 2004;109:157–62.

    Article  CAS  PubMed  Google Scholar 

  72. Gray LJ, Bjelogrlic P, Appleyard VCL, Thompson AM, Jolly CE, Lain S, et al. Selective induction of apoptosis by leptomycin B in keratinocytes expressing HPV oncogenes. Int J Cancer. 2007;120:2317–24.

    Article  CAS  PubMed  Google Scholar 

  73. Winder D, Pett M, Foster N, Shivji M, Herdman M, Stanley M, et al. An increase in DNA double-strand breaks, induced by Ku70 depletion, is associated with human papillomavirus 16 episome loss and de novo viral integration events. J Pathol. 2007;213:27–34.

    Article  CAS  PubMed  Google Scholar 

  74. Pett M, Coleman N. Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol. 2007;212:356–67.

    Article  CAS  PubMed  Google Scholar 

  75. Woodman CBJ, Collins SI, Young LS. The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer. 2007;7:11–22.

    Article  CAS  PubMed  Google Scholar 

  76. Hiller T, Poppelreuther S, Stubenrauch F, Iftner T. Comparative analysis of 19 genital human papillomavirus types with regard to p53 degradation, immortalization, phylogeny, and epidemiologic risk classification. Cancer Epidemiol Biomarkers Prev. 2006;15:1262–7.

    Article  CAS  PubMed  Google Scholar 

  77. Münger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 1989;8:4099–105.

    PubMed Central  PubMed  Google Scholar 

  78. Stoler MH, Schiffman M, Cells AS, Atypical Squamous Cells of Undetermined Significance-Low-grade Squamous Intraepithelial Lesion Triage Study Group. Interobserver reproducibility of cervical cytologic and histologic interpretations: realistic estimates from the ASCUS-LSIL Triage Study. JAMA. 2001;285:1500–5.

    Article  CAS  PubMed  Google Scholar 

  79. Galgano MT, Castle PE, Stoler MH, Solomon D, Schiffman M. Can HPV-16 genotyping provide a benchmark for cervical biopsy specimen interpretation? Am J Clin Pathol. 2008;130:65–70.

    Article  PubMed  Google Scholar 

  80. Chelmow D, Waxman A, Cain JM, Lawrence III HC. The evolution of cervical screening and the specialty of obstetrics and gynecology. Obstet Gynecol. 2012;119:695–9.

    Article  PubMed  Google Scholar 

  81. Massad LS, Jeronimo J, Katki HA, Schiffman M, National Institutes of Health/American Society for C, Cervical Pathology Research G. The accuracy of colposcopic grading for detection of high-grade cervical intraepithelial neoplasia. J Low Genit Tract Dis. 2009;13:137–44.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Quint W, Jenkins D, Molijn A, Struijk L, van de Sandt M, Doorbar J, et al. One virus, one lesion–individual components of CIN lesions contain a specific HPV type. J Pathol. 2012;227:62–71.

    Article  CAS  PubMed  Google Scholar 

  83. Anderson MC, Brown CL, Buckley CH, Fox H, Jenkins D, Lowe DG, et al. Current views on cervical intraepithelial neoplasia. J Clin Pathol. 1991;44:969–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Heatley MK. How should we grade CIN? Histopathology. 2002;40:377–90.

    Article  CAS  PubMed  Google Scholar 

  85. McCluggage WG, Bharucha H, Caughley LM, Date A, Hamilton PW, Thornton CM, et al. Interobserver variation in the reporting of cervical colposcopic biopsy specimens: comparison of grading systems. J Clin Pathol. 1996;49:833–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Jenkins D, Tay SK, McCance DJ, Campion MJ, Clarkson PK, Singer A. Histological and immunocytochemical study of cervical intraepithelial neoplasia (CIN) with associated HPV 6 and HPV 16 infections. J Clin Pathol. 1986;39:1177–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Van Leeuwen AM, Pieters WJ, Hollema H, Burger MP. Atypical mitotic figures and the mitotic index in cervical intraepithelial neoplasia. Virchows Arch. 1995;427:139–44.

    Article  PubMed  Google Scholar 

  88. Ismail S, Fiander A. Grading cervical intraepithelial neoplasia. Histopathology. 2002;40:385–90.

    Article  Google Scholar 

  89. Wilson GE. The classification of cervical intraepithelial neoplasia. Histopathology. 2002;40:380–5.

    Article  Google Scholar 

  90. Malpica A, Deavers M, Euscher E. Biopsy interpretation of the uterine cervix and corpus. Philadelphia, PA: Lippincott Williams & Wilkins; 2010.

    Google Scholar 

  91. Roteli-Martins CM, Alves VA, Santos RT, Martinez EZ, Syrjanen KJ, Derchain SF. Value of morphological criteria in diagnosing cervical HPV lesions confirmed by in situ hybridization and hybrid capture assay. Pathol Res Pract. 2001;197:677–82.

    Article  CAS  PubMed  Google Scholar 

  92. Stoler MH, Vichnin MD, Ferenczy A, Ferris DG, Perez G, Paavonen J, et al. The accuracy of colposcopic biopsy: analyses from the placebo arm of the Gardasil clinical trials. Int J Cancer. 2011;128:1354–62.

    Article  CAS  PubMed  Google Scholar 

  93. Brinck U, Jakob C, Bau O, Fuzesi L. Papillary squamous cell carcinoma of the uterine cervix: report of three cases and a review of its classification. Int J Gynecol Pathol. 2000;19:231–5.

    Article  CAS  PubMed  Google Scholar 

  94. Koenig C, Turnicky RP, Kankam CF, Tavassoli FA. Papillary squamotransitional cell carcinoma of the cervix: a report of 32 cases. Am J Surg Pathol. 1997;21:915–21.

    Article  CAS  PubMed  Google Scholar 

  95. Arbyn M, Benoy I, Simoens C, Bogers J, Beutels P, Depuydt C. Prevaccination distribution of human papillomavirus types in women attending at cervical cancer screening in Belgium. Cancer Epidemiol Biomarkers Prev. 2009;18:321–30.

    Article  CAS  PubMed  Google Scholar 

  96. Arbyn M, Martin-Hirsch P, Buntinx F, Van Ranst M, Paraskevaidis E, Dillner J. Triage of women with equivocal or low-grade cervical cytology results: a meta-analysis of the HPV test positivity rate. J Cell Mol Med. 2009;13:648–59.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Simonella LM, Lewis H, Smith M, Neal H, Bromhead C, Canfell K. Type-specific oncogenic human papillomavirus infection in high grade cervical disease in New Zealand. BMC Infect Dis. 2013;13:114.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Robertson JH, Woodend B, Elliott H. Cytological changes preceding cervical cancer. J Clin Pathol. 1994;47:278–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Underwood M, Arbyn M, Parry-Smith W, De Bellis-Ayres S, Todd R, Redman CW, et al. Accuracy of colposcopy-directed punch biopsies: a systematic review and meta-analysis. BJOG. 2012;119:1293–301.

    Article  CAS  PubMed  Google Scholar 

  100. Burd EM. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003;16:1–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Stoler MH. Human papillomavirus biology and cervical neoplasia: implications for diagnostic criteria and testing. Arch Pathol Lab Med. 2003;127:935–9.

    PubMed  Google Scholar 

  102. Dollard SC, Wilson JL, Demeter LM, Bonnez W, Reichman RC, Broker TR, et al. Production of human papillomavirus and modulation of the infectious program in epithelial raft cultures. OFF Genes Dev. 1992;6:1131–42.

    Article  CAS  PubMed  Google Scholar 

  103. Demeter LM, Stoler MH, Sobel ME, Broker TR, Chow LT. Expression of high-affinity laminin receptor mRNA correlates with cell proliferation rather than invasion in human papillomavirus-associated cervical neoplasms. Cancer Res. 1992;52:1561–7.

    CAS  PubMed  Google Scholar 

  104. Demeter LM, Stoler MH, Broker TR, Chow LT. Induction of proliferating cell nuclear antigen in differentiated keratinocytes of human papillomavirus-infected lesions. Hum Pathol. 1994;25:343–8.

    Article  CAS  PubMed  Google Scholar 

  105. Stoler MH. Human papillomaviruses and cervical neoplasia: a model for carcinogenesis. Int J Gynecol Pathol. 2000;19:16–28.

    Article  CAS  PubMed  Google Scholar 

  106. McCluggage WG. Immunohistochemistry as a diagnostic aid in cervical pathology. Pathology (Philadelphia). 2007;39:97–111.

    CAS  Google Scholar 

  107. Park KJ, Soslow RA. Current concepts in cervical pathology. Arch Pathol Lab Med. 2009;133:729–38.

    PubMed  Google Scholar 

  108. O’Neill CJ, McCluggage WG. p16 expression in the female genital tract and its value in diagnosis. Adv Anat Pathol. 2006;13:8–15.

    Article  PubMed  Google Scholar 

  109. Tsoumpou I, Arbyn M, Kyrgiou M, Wentzensen N, Koliopoulos G, Martin-Hirsch P, et al. p16(INK4a) immunostaining in cytological and histological specimens from the uterine cervix: a systematic review and meta-analysis. Cancer Treat Rev. 2009;35:210–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Galgano MT, Castle PE, Atkins KA, Brix WK, Nassau SR, Stoler MH. Using biomarkers as objective standards in the diagnosis of cervical biopsies. Am J Surg Pathol. 2010;34:1077–87.

    Article  PubMed Central  PubMed  Google Scholar 

  111. Bergeron C, Ordi J, Schmidt D, Trunk MJ, Keller T, Ridder R, et al. Conjunctive p16INK4a testing significantly increases accuracy in diagnosing high-grade cervical intraepithelial neoplasia. Am J Clin Pathol. 2010;133:395–406.

    Article  PubMed  Google Scholar 

  112. Keating JT, Cviko A, Riethdorf S, Riethdorf L, Quade BJ, Sun D, et al. Ki-67, cyclin E, and p16INK4 are complimentary surrogate biomarkers for human papilloma virus-related cervical neoplasia. Am J Surg Pathol. 2001;25:884–91.

    Article  CAS  PubMed  Google Scholar 

  113. Wentzensen N, Schwartz L, Zuna RE, Smith K, Mathews C, Gold MA, et al. Performance of p16/Ki-67 immunostaining to detect cervical cancer precursors in a colposcopy referral population. Clin Cancer Res. 2012;18:4154–62.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Sanati S, Huettner P, Ylagan LR. Role of ProExC: a novel immunoperoxidase marker in the evaluation of dysplastic squamous and glandular lesions in cervical specimens. Int J Gynecol Pathol. 2010;29:79–87.

    Article  PubMed  Google Scholar 

  115. Kelly D, Kincaid E, Fansler Z, Rosenthal DL, Clark DP. Detection of cervical high-grade squamous intraepithelial lesions from cytologic samples using a novel immunocytochemical assay (ProEx C). Cancer. 2006;108:494–500.

    Article  CAS  PubMed  Google Scholar 

  116. Shi J, Liu H, Wilkerson M, Huang Y, Meschter S, Dupree W, et al. Evaluation of p16INK4a, minichromosome maintenance protein 2, DNA topoisomerase IIalpha, ProEX C, and p16INK4a/ProEX C in cervical squamous intraepithelial lesions. Hum Pathol. 2007;38:1335–44.

    Article  CAS  PubMed  Google Scholar 

  117. Badr RE, Walts AE, Chung F, Bose S. BD ProEx C: a sensitive and specific marker of HPV-associated squamous lesions of the cervix. Am J Surg Pathol. 2008;32:899–906.

    Article  PubMed  Google Scholar 

  118. Pinto AP, Schlecht NF, Woo TY, Crum CP, Cibas ES. Biomarker (ProEx C, p16(INK4A), and MiB-1) distinction of high-grade squamous intraepithelial lesion from its mimics. Mod Pathol. 2008;21:1067–74.

    Article  CAS  PubMed  Google Scholar 

  119. Mittal K. Utility of MIB-1 in evaluating cauterized cervical cone biopsy margins. Int J Gynecol Pathol. 1999;18:211–4.

    Article  CAS  PubMed  Google Scholar 

  120. Mittal K. Utility of proliferation-associated marker MIB-1 in evaluating lesions of the uterine cervix. Adv Anat Pathol. 1999;6:177–85.

    Article  CAS  PubMed  Google Scholar 

  121. Mittal K, Mesia A, Demopoulos RI. MIB-1 expression is useful in distinguishing dysplasia from atrophy in elderly women. Int J Gynecol Pathol. 1999;18:122–4.

    Article  CAS  PubMed  Google Scholar 

  122. Bulten J, van der Laak JA, Gemmink JH, Pahlplatz MM, de Wilde PC, Hanselaar AG. MIB1, a promising marker for the classification of cervical intraepithelial neoplasia. J Pathol. 1996;178:268–73.

    Article  CAS  PubMed  Google Scholar 

  123. Pirog EC, Baergen RN, Soslow RA, Tam D, DeMattia AE, Chen YT, et al. Diagnostic accuracy of cervical low-grade squamous intraepithelial lesions is improved with MIB-1 immunostaining. Am J Surg Pathol. 2002;26:70–5.

    Article  PubMed  Google Scholar 

  124. Castle PE, Schiffman M, Wheeler CM, Wentzensen N, Gravitt PE. Human papillomavirus genotypes in cervical intraepithelial neoplasia grade 3. Cancer Epidemiol Biomarkers Prev. 2010;19:1675–81.

    Article  PubMed Central  PubMed  Google Scholar 

  125. Cox JT, Schiffman M, Solomon D, Group A-LTS. Prospective follow-up suggests similar risk of subsequent cervical intraepithelial neoplasia grade 2 or 3 among women with cervical intraepithelial neoplasia grade 1 or negative colposcopy and directed biopsy. Am J Obstet Gynecol. 2003;188:1406–12.

    Article  PubMed  Google Scholar 

  126. Guido R, Schiffman M, Solomon D, Burke L, Group ALTS. Postcolposcopy management strategies for women referred with low-grade squamous intraepithelial lesions or human papillomavirus DNA-positive atypical squamous cells of undetermined significance: a two-year prospective study. Am J Obstet Gynecol. 2003;188:1401–5.

    Article  PubMed  Google Scholar 

  127. Negri G, Bellisano G, Zannoni GF, Rivasi F, Kasal A, Vittadello F, et al. p16 ink4a and HPV L1 immunohistochemistry is helpful for estimating the behavior of low-grade dysplastic lesions of the cervix uteri. Am J Surg Pathol. 2008;32:1715–20.

    Article  PubMed  Google Scholar 

  128. Ozaki S, Zen Y, Inoue M. Biomarker expression in cervical intraepithelial neoplasia: potential progression predictive factors for low-grade lesions. Hum Pathol. 2011;42:1007–12.

    Article  CAS  PubMed  Google Scholar 

  129. Arbyn M, Ronco G, Anttila A, Meijer CJ, Poljak M, Ogilvie G, et al. Evidence regarding human papillomavirus testing in secondary prevention of cervical cancer. Vaccine. 2012;30 Suppl 5:F88–99.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Hirschowitz MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hirschowitz, L., Herrington, C.S. (2016). Precancerous Lesions of Squamous Cell Carcinoma of the Cervix: Squamous Dysplasia. In: Fadare, O. (eds) Precancerous Lesions of the Gynecologic Tract. Springer, Cham. https://doi.org/10.1007/978-3-319-22509-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22509-8_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22508-1

  • Online ISBN: 978-3-319-22509-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics