Advertisement

Multispectral Biometrics Systems

Chapter

Abstract

Until now, many multispectral biometrics technologies and systems have been proposed. Different multispectral biometrics systems have their own characteristics. This chapter gives an overall review of multispectral imaging (MSI) techniques and their applications in biometrics.

Keywords

Multispectral biometrics Face Fingerprint Palmprint Iris Dorsal hand 

References

  1. Akhloufi MA, Abdelhakim B (2010) Locally adaptive texture features for multispectral face recognition. In: IEEE International conference on systems man and cybernetics (SMC), 2010Google Scholar
  2. Aravind K, Gladimir VG (2004) A study on skin optics. Technical report, University of Waterlo, CanadaGoogle Scholar
  3. Bendada A, Moulay AA (2010) Multispectral face recognition in texture space. In: Computer and robot vision (CRV), 2010 Canadian conferenceGoogle Scholar
  4. Biometric Technology Working For Military Network (2008) http://americancityandcounty.com/security/military-using-biometrics-0221
  5. Boothapati S, Natalia AS (2013) Encoding and selecting features for boosted multispectral face recognition: matching SWIR versus color. In: SPIE defense, security, and sensing. International society for optics and photonicsGoogle Scholar
  6. Bourlai T, Bojan C (2012) Multi-spectral face recognition: identification of people in difficult environments. In: Intelligence and security informatics (ISI), 2012 IEEE international conferenceGoogle Scholar
  7. Boyce CK (2006) Multispectral iris recognition analysis: techniques and evaluation. West Virginia University, pp 101–102Google Scholar
  8. Buddharaju P, Pavlidis I (2007) Multispectral face recognition: fusion of visual imagery with physiological information. Face biometrics for personal identification. Springer, Berlin Heidelberg, pp 91–108CrossRefGoogle Scholar
  9. Burge MJ, Monaco MK (2009) Multispectral iris fusion for enhancement, interoperability, and cross wavelength matching. In: Proceedings of SPIE, vol 7334, 73341DGoogle Scholar
  10. Chang H, Koschan A, Abidi B, Abidi M (2006) Physics-based fusion of multispectral data for improved face recognition. In: 18th international conference pattern recognition, 2006. ICPR 2006Google Scholar
  11. Chang H, Koschan A, Abidi B, Abidi M (2010) Fusing continuous spectral images for face recognition under indoor and outdoor illuminants. Mach Vis Appl 21(2):201–215CrossRefGoogle Scholar
  12. Chen L, Zheng H, Li L, Xie P, Liu S (2007) Near-infrared dorsal hand vein image segmentation by local thresholding using grayscale morphology. In: 1st international conference bioinformatics and biomedical engineeringGoogle Scholar
  13. Di W, Zhang L, Zhang D, Pan Q (2010) Studies on hyperspectral face recognition in visible spectrum with feature band selection. IEEE Trans Syst Man Cybern-Part A: Syst Hum 40(6):1354–1361CrossRefGoogle Scholar
  14. Fakourfar H, Belongie S (2009) Fingerprint recognition system performance in the maritime environment. In: Applications of computer vision (WACV), 2009 WorkshopGoogle Scholar
  15. Filter Wheel (2014) http://www.scitec.uk.com/fibreoptics/fw2000.php. Accessed 30 Nov 2014
  16. Hao Y, Sun Z, Tan T (2007) Comparative studies on multispectral palm image fusion for biometrics. In: Asian conference on computer vision, pp 12–21Google Scholar
  17. Hao Y, Sun Z, Tan T, Ren C (2008) Multispectral palm image fusion for accurate contact-free palmprint recognition, In: International conference on image processing, pp 281–284Google Scholar
  18. Hyperspectral imaging (2014) http://en.wikipedia.org/wiki/Hyperspectral_imaging. Accessed 30 Nov 2014
  19. Khalil MS, Muhammad D, AL-Nuzaili Q (2009) Fingerprint verification using the texture of fingerprint image. In: Second international conference, machine vision, 2009. ICMV'09Google Scholar
  20. Koschan A, Yao Y, Chang H, Abidi M (2011) Multispectral face imaging and analysis. Handbook of face recognition. Springer, London, pp 401–428CrossRefGoogle Scholar
  21. Likforman-Sulem L, Salicetti S, Dittmann J, Ortega-Garcia J, Pavesic N, Gluhchev G, Ribaric S, Sankur B (2007) Final report on the jointly executed research carried out on signature, hand and other modalities. http://www.cilab.upf.edu/biosecure1/public_docs_deli/BioSecure_Deliverable_D07-4-4_b2.pdf.pdf
  22. Liquid Crystal Tunable Filter (2014) http://en.wikipedia.org/wiki/Liquid_crystal_tunable_filter. Accessed 30 Nov 2014
  23. Liu Z, Yan J, Zhang D, Li Q (2007) Automated tongue segmentation in hyperspectral images for medicine. Appl Opt 46:8328–8334CrossRefGoogle Scholar
  24. Nicolo F, Natalia AS (2011) A method for robust multispectral face recognition. Image analysis and recognition. Springer, Berlin Heidelberg, pp 180–190CrossRefGoogle Scholar
  25. Park J, Kang M (2007) Multispectral iris authentication system against counterfeit attack using gradient-based image fusion. Opt Eng 46:117003Google Scholar
  26. Ross A, Pasula R, Hornak L (2006a) Exploring multispectral Iris recognition beyond 900 nm. In: Proceedings of the 2006 conference on computer vision and pattern recognition workshop: 51Google Scholar
  27. Ross AA, Nadakumar K, Jain AK (2006b) Handbook of multibiometrics, Springer, BerlinGoogle Scholar
  28. Rowe RK, Nixon K, Corcoran S (2005) Multispectral fingerprint biometrics. In: Proceedings from the sixth annual IEEE SMC, Information assurance workshop, 2005. IAW'05Google Scholar
  29. Rowe RK, Uludag U, Demirkus M, Parthasaradhi S, Jain AK (2007) A multispectral whole-hand biometric authentication system. In: Biometrics Symposium, pp 1–6Google Scholar
  30. Rowe RK, Nixon KA, Butler PW (2008) Multispectral fingerprint image acquisition. Advances in biometrics. Springer, Berlin, pp 3–23Google Scholar
  31. Singh R, Vatsa M, Noore A (2008a) Multiclass mv-granular soft support vector machine: a case study in dynamic classifier selection for multispectral face recognition. In: 19th international conference on pattern recognition, 2008. ICPR 2008Google Scholar
  32. Singh R, Vatsa M, Noore A (2008b) Hierarchical fusion of multi-spectral face images for improved recognition performance. Inf Fusion 9(2):200–210CrossRefGoogle Scholar
  33. Wang J, Yau W, Suwandy A, Sung E (2008a) Person recognition by fusing palmprint and palm vein images based on “Laplacianpalm” representation. Pattern Recogn 41(5):1514–1527MATHCrossRefGoogle Scholar
  34. Wang L, Leedham G, Cho DS-Y (2008b) Minutiae feature analysis for infrared hand vein pattern biometrics. Pattern Recogn 41:920–929CrossRefGoogle Scholar
  35. Wilkerson CL, Syed NA, Fisher MR, Robinson NL, Wallow IHL, Albert DM (1996) Melanocytes and iris color: light-microscopic findings. Arch Ophthalmol 114:437–442CrossRefGoogle Scholar
  36. Yi M (2006) Multispectral imaging for illumination invariant face recognitionGoogle Scholar
  37. Zheng Y (2011) Orientation-based face recognition using multispectral imagery and score fusion. Opt Eng 50(11): 117202Google Scholar
  38. Zheng Y, Elmagbraby A (2011) A brief survey on multispectral face recognition and multimodal score fusion. In: Signal processing and information technology (ISSPIT), 2011 IEEE international symposiumGoogle Scholar
  39. Zheng Y, Zhang C, Zhou Z (2012) A wavelet-based method for multispectral face recognition. In: SPIE defense, security, and sensing, international society for optics and photonicsGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Biometrics Research CentreThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR
  2. 2.Shenzhen Key Laboratory of Broadband Network & Multimedia, Graduate School at ShenzhenTsinghua UniversityShenzhenChina
  3. 3.University of Shanghai for Science and TechnologyShanghaiChina

Personalised recommendations