Phylogenetics and Conservation Biology: Drawing a Path into the Diversity of Life

Part of the Topics in Biodiversity and Conservation book series (TOBC, volume 14)

Abstract

In the midst of a major extinction crisis, the scientific community is called to provide criteria, variables and standards for defining strategies of biodiversity conservation and monitoring their results. Phylogenetic diversity is one of the variables taken in account. Its consideration in biodiversity conservation stemmed from the idea that species are not equal in terms of evolutionary history and opened a completely new line of investigation. It has turned the focus to the need of protecting the Tree of Life, i.e. the diversity of features resulting from the evolution of Life on Earth. This approach is now recognized as a strategy for increasing options for future needs and values as well as for increasing the potential of biodiversity diversification in a future environment. Since its introduction in biodiversity conservation thinking much has been developed in order to compose our conceptual understanding of the importance of protecting the Tree of Life. The aim of this book is to contribute to the ongoing international construction of strategies for reducing biodiversity losses by exploring several approaches for the conservation of phylogenetic diversity. We hope that this concentrated effort will contribute to the emergence of new solutions and attitudes towards a more effective preservation of our evolutionary heritage. The chapters of this book are organized around three main themes: questions, methods and applications, providing a condensed updated picture of the state of the art and showing that either conceptually or methodologically phylogenetic diversity has everything to be on the global agenda of biodiversity conservation.

Keywords

Tree-of-life Sixth mass extinction Evolutionary heritage Biodiversity monitoring Essential biodiversity variable 

During the last centuries and more dramatically in the last four decades, natural habitats were destroyed at rates much higher than ever observed in human history. All biomes were affected, but those located in tropical regions were more impacted, particularly because policies for the development and appropriation of these territories were emphasized during this period. Nonetheless, the massive transformation of these landscapes to give place to crops and towns multiplied species’ losses and vulnerability at incredible rates (Millennium Ecosystem Assessment 2005), mostly due to the fact that most of world’s biodiversity is concentrated around the tropics (Gaston 2000). In addition to habitat destruction and fragmentation, natural ecosystems were also submitted to high levels of pollution, overexploitation of forestry and fishery resources, invasive species, and to the effects of climate changes mainly provoked by man-induced greenhouse gas emissions. As a result, a high number of species were already extinct and others have suffered severe populations declines (Mace et al. 2005), with many advancing at high speed to higher categories of threat every year (e.g., Hoffmann et al. 2010). So, recent scenarios integrating main extinction drivers suggest that rates of extinction are likely to rise by at least a further order of magnitude over the next few centuries (Mace et al. 2005; Pereira et al. 2010; Barnosky et al. 2012; Proença and Pereira 2013).

This critical situation is now recognized as the “sixth mass extinction”, i.e. the sixth period in the history of life in which more than three-quarters of the living species is lost in a short geological interval (Barnosky et al. 2011). Compared to the first “big five”, this extinction period has the peculiarity of being caused mainly by the way of living of one single species, the humans. Counteracting this trend is perhaps the biggest ethic, political and scientific challenge of our times (Sarkar 2005), as the time for action is short, funds for biodiversity conservation are far from below the real needs (e.g., McCarthy et al. 2012), uncertainties are enormous (Forest et al. 2015), and the solution of conflicts with main-trend ways-of-living and main patterns of distribution and consumption (e.g., Lenzen et al. 2012) often takes much longer than habitat destruction.

In the race to combat extinctions, there is urgency for increasing conservation worldwide. The scientific community is pressed to provide criteria in order to define priorities, as well as for indicating variables and standards that allows for monitoring the evolution of biodiversity in the light of these strategies (Hoffmann et al. 2010; Pereira et al. 2010, 2013; Mace et al. 2010, 2014). Traditionally, biodiversity conservation was based on species counts, valuing sites in terms of species richness, number of endemics and number of threatened species (Myers et al. 2000; Myers 2003; Kier et al. 2009). However, in spite of its generalized use, this kind of data can be very heterogeneous making very difficult comparisons across taxonomic groups, along time and among sites, as species richness can be influenced by many factors, going from the species concept to the spatial scale and sampling effort (see Gaston 1996 for an overview on this subject). Similarly, in spite of the great interest of Red Lists of species’ threats, such as that from IUCN (International Union for Conservation of Nature), to indicate imminent risks of extinction, concentrating conservation-limited resources on threatened species can be very risky and these limits must be considered (Possingham et al. 2002). Moreover, measures based on species counts also have the limitation of considering all species as equals, being blind to particular functional roles in the ecosystem, to associations in communities, or to their evolutionary history.

The contribution of phylogenetic systematics to this debate stemmed from this idea that species are not equal and from the possibility of characterization in terms of evolutionary history (Vane-Wright et al. 1991; Faith 1992). Systematics addresses the interrelatedness of organisms in terms of shared inherited and original features (Hennig 1966; Eldredge and Cracraft 1980; Wiley 1981). This old but recently revived science moved from describing and classifying the living beings in the eighteenth century to macro-evolutionary biology in the twentieth century with modern phylogenetics (O’Hara 1992). Phylogenies are trees of history, showing both the species relationships and the evolution of sets of characters. They are the basis for organizing and retrieving all current knowledge about biodiversity, either structural or functional in an evolutionary context.

The consideration of phylogenetic systematics in biodiversity conservation opened a completely new line of investigation as it has turned the focus to the need of protecting the Tree of Life, i.e. the diversity of features resulting from the evolution of Life on Earth (Mace et al. 2003; Purvis et al. 2005; Mace and Purvis 2008; MacLaurin and Sterelny 2008; Forest et al. 2015). Since its introduction in biodiversity conservation thinking much has been developed in order to compose our present conceptual understanding of the importance of protecting the Tree of Life. Several methodological issues were developed and refined; the input of phylogenetic diversity in comparison with species richness was assessed in different ways; several studies attempting to prioritize species and areas for conservation were developed; the relationship between the losses of evolutionary history with extinctions was studied in different contexts; and different new concepts emerged (see Table 1).
Table 1

Some examples of studies linking phylogenetic systematics and biodiversity conservation

Problems

Examples

Development of methods and measures to assess taxonomic or evolutionary distinctiveness or phylogenetic diversity

Vane-Wright et al. 1991; May 1990; Faith 1992; Posadas et al. 2001; Pavoine et al. 2005; Redding and Mooers 2006; Isaac et al. 2007; Steel et al. 2007; Hartmann and Steel 2007; Lozupone and Knight 2005; Rosauer et al. 2009; Cadotte and Davies 2010; Chao et al. 2010

Comparison of phylogenetic measures

Schweiger et al. 2008; Davies and Cadotte 2011; Pio et al. 2011

Comparison of phylogenetic diversity to traditional measures

Polasky et al. 2002; Rodrigues and Gaston 2002; Rodrigues et al. 2005, 2011; Hartmann and André 2013

Inclusion of phylogenetics in systematic conservation planning

Walker and Faith 1994; Arponen 2012

Prioritization of areas for the conservation of evolutionary history

Posadas et al. 2001; Lehman 2006; McGoogan et al. 2007; López-Osorio and Miranda-Esquivel 2010; Forest et al. 2007; Buerki et al. 2015; Pollock et al. 2015; Zupan et al. 2014

Prioritization of species

Weitzman 1998; Isaac et al. 2007; Kuntner et al. 2011; Redding et al. 2015

Relationship between extinctions and the loss of phylogenetic diversity

Nee and May 1997; Purvis 2008; Davies et al. 2008; Fritz et al. 2009; Fritz and Purvis 2010; Magnuson-Ford et al. 2010; Jono and Pavoine 2012; Yessoufou et al. 2012; Davies 2015; Faith 2015; Gudde et al. 2013; Huang and Roy 2015

Climate change and the loss of phylogenetic diversity

Faith and Richards 2012; Thuiller et al. 2011, 2015

Phylogenetic and functional diversity

Safi et al. 2011; Huang et al. 2012

Cost of conserving phylogenetic diversity

Weitzman 1998; Nunes et al. 2015

Development of key concepts related to biodiversity conservation that integrates phylogenetic diversity

Evolutionary heritage (Mooers et al. 2005)

Phylogenetic diversity and option values (Faith 1992; Steel et al. 2007; Forest et al. 2007)

Evosystem services (Faith et al. 2010)

Key biodiversity areas for conservation (Brooks et al. 2015)

Phylogenetic planetary boundaries and tipping points (Faith et al. 2010)

Please note that these are leading marks: most of these researches approached more than one of these problems

Glossary

Biodiversity: is a very inclusive term formed by contraction of “biological diversity.” In this book, we use this term to express the variety of life, often willing to express the integrative definition of the Convention on Biological Diversity in which “Biological diversity” means “the variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species and of ecosystems”.

Evolutionary history: the chronicle of the process whereby the diversity of life is built.

Phylogenetic Systematics: the scientific discipline describing and naming the different organisms, assessing their relatedness in the Tree of Life and proposing subsequent classifications. Species phylogenetic relationships are assessed on the basis of originally shared characters modified during evolution.

Treeof life: an old metaphor to describe the interrelatedness of all organisms (living and extinct), based on their evolutionary history.

The main aim of this book is to contribute to the ongoing international search for reducing biodiversity losses in this critical period for life on Earth by exploring several approaches for the conservation of phylogenetic diversity. As shown in Table 1, the universe of problems to be prospected in this subject is quite large and could not fit in a single volume. In spite of that, here we provide a condensed updated picture of the state of the art showing that either conceptually or methodologically phylogenetic diversity has everything to be on the global agenda of biodiversity conservation. This book is organized around three main themes: questions, methods and applications. We hope that this concentrated effort will contribute to the emergence of new solutions and attitudes towards a more effective preservation of our evolutionary heritage.

Questions

This first section is composed of chapters addressing some central questions concerning the links between biodiversity conservation and phylogenetic systematics. The first, and perhaps the most important of these questions, concerns the nature of the role of phylogenetic systematics in conservation efforts. How do we value the Tree of Life? Why to use aspects of phylogeny in preference to other biodiversity variables? These questions are explored by Lean and Maclaurin in chapter “The Value of Phylogenetic Diversity”. They develop the idea that phylogenetic diversity plays a unique role in underpinning conservation endeavor and represents the foundation of a general measure of biodiversity. In a synthesis about the reasons and the types of values that should guide biodiversity conservation and qualify a general biodiversity measure, they propose that phylogeny is the only basis for large-scale conservation prioritization. They justify this argument by showing that phylogeny is the only guide for maximizing feature diversity (sensu Faith 1992) across many different taxa, and also is the best way to hedge our bets against uncertainties related to environmental changes and to human’s future needs and values.

Glossary

PDor Faith’s PD: is the measure of phylogenetic diversity created by Faith (1992). Specifically it is the sum of the lengths of all phylogenetic branches (from the root to the tip) spanned by a set of species. In this book, we refer to PD or Faith’s PD to indicate this measure.

Phylogenetic diversity: all over this book we use this term in very large sense, independently of the measure, willing to express the differences between organisms due to their evolutionary history, and so captured by a phylogeny. It can be used to express the uniqueness of one species or the representativeness of a set of organisms, according to several different measures.

Evolutionary distinctiveness (Isaac et al. 2007) orEvolutionary distinctness: is here used to indicate measures destined to assess the phylogenetic diversity of each species, independently if it is based on topology or branch length. Contrarily to PD, where the contribution of a species may vary from one set to another depending on the other species occurring in it, with measures of evolutionary distinctiveness each species has an invariable value.

Taxonomic distinctiveness (Vane-Wright et al. 1991): like in the case of Evolutionary distinctiveness, it is used to express measures designed to assess the phylogenetic diversity of species, but this definition is restricted to those measures based on tree topology.

If the way we value phylogenetic diversity is central for any justifications for including phylogeny in conservations efforts, an equally important consideration must be the choice of the measure that adequately captures the aspects of phylogenetic diversity that are important for conservation. Lean and MacLaurin propose that this measure should maximize feature diversity. However, there are very few studies comparing the performance of the measures under such criteria (Redding and Mooers 2006; Schweiger et al. 2008; Pio et al. 2011). Dan Faith (chapter “The PD Phylogenetic Diversity Framework: Linking Evolutionary History to Feature Diversity for Biodiversity Conservation”) addresses this question through the comparison of PD (Faith 1992), in relation to several measures of Evolutionary Distinctiveness (ED) in the context of priority setting for conservation. The core of Dan’s analysis is complementarity (marginal gains and losses of PD or feature diversity), an attribute intrinsic to PD’s algorithm, but lacking in ED measures. Here he shows that PD complementarity allows the identification of sets of species with maximum PD, whereas ED indices are unable to reliably identify such diverse sets.

The next contribution deals with the loss of phylogenetic diversity with extinction. Are there phylogenetic signals in extinctions? What is the role of extrinsic and intrinsic factors in extinctions, and what is the role of phylogeny in data exploration and analysis (Grandcolas et al. 2010)? Are extinction drivers similar to different groups of organisms? What is the role of evolutionary models in the patterns observed? These questions are here explored by Yessoufou and Davies (chapter “Reconsidering the Loss of Evolutionary History: How Does Non-random Extinction Prune the Tree-of-Life?”). They first review the main extinction drivers, showing that the most relevant might be quite different among vertebrates, invertebrates and plants. By exploring how non-random extinction prunes the Tree of Life under different models of evolution, they call our attention to the fact that the model of evolution is likely to be a key explanatory of the loss of evolutionary history. They also argue that more branches are likely to be lost from the Tree of Life under the speciational model of evolution.

Many of our considerations about the conservation of the Tree of Life are based on our knowledge of a micro-fraction of the living world, given that we often focus on organisms that are very close to human eyes, like vertebrates, vascular plants, and a few emblematic insects. Likewise, most of the phylogenies used to this purpose are based on molecular data, very often on very small sets of short gene sequences. An advantage of molecular data for phylogenetic inference is provision of a standardized set of characters, often reflecting the main patterns of relationship of the species in a group of organisms. However, the extent to which these genes portions evolve and reflect the evolution of other traits is seldom well studied. Such an issue is central to arguments that phylogenetic diversity links to general feature diversity. These problems are explored by Steve Trewick and Mary Morgan-Richards (chapter “Phylogenetics and Conservation in New Zealand: The Long and the Short of It”). With examples of the phylogenetic position (as assessed through molecular data) of some legendary organisms from New Zealand such as Kākāpō, takahē and tuatara, they shake some established views about the extent molecular branch length reflects other extraordinary ecological, morphological or behavioral traits. Going further, they turn our lenses to the microscopic life that is much more deeply branched in the Tree of Life. Taking the example of marine sponges, they show that a single sponge provides an environment that can host several distinct microbial communities (microbiomes) and so preserve organisms from more than 40 phyla all branched much deeper than vertebrates and plants. At reading this chapter, we are guided to a more inclusive perspective of biodiversity and we can find more reasons for protecting Kākāpō, takahē, tuatara, marine sponges and… microbes.

Relict species are often presented as examples of important species for the conservation of phylogenetic diversity. Everyone has heard about Coelacanth and Platypus as examples of unique evolutionary histories. In spite of this, the concept of relict species is still plagued with misleading ideas and uses, potentially causing misunderstandings for the use of phylogenetic diversity in general. Philippe Grandcolas and Steve Trewick (chapter “What Is the Meaning of Extreme Phylogenetic Diversity? The Case of Phylogenetic Relict Species”) aim at freeing the concept from these problems, and use the extreme case of relict species to explore the nature and the use of phylogenetic diversity. The study of relicts helps understanding that early-branching species that make high values of phylogenetic diversity (the “unique PD” of Forest et al. 2015) are not necessarily evolutionarily “frozen”. Their conservation is not only aimed at retaining Life’s diversity but also at keeping evolutionary potential. It is also worth-mentioning that such species have often been empirically shown to have special extinction risks, highlighting again the important role of phylogenetic diversity in conservation biology.

Methods

In this section we introduce the set of contributions dealing with methodology sensu stricto. It starts with two papers dealing with different possibilities of applications and extensions of the PD framework in community assessments, area comparisons and long-term monitoring of biodiversity changes. In chapter “Using Phylogenetic Dissimilarities Among Sites for Biodiversity Assessments and Conservation”, Dan Faith details one possible extension of the PD family of measures, the Environmental Dissimilarity (ED) methods. While PD assumes that shared ancestry accounts for shared features among taxa, ED attempts to account for shared features through shared habitat/environment among taxa, thus including those shared features not explained by shared ancestry. With some graphical examples Dan shows how ED works. Further, he synthesizes a set of ED-based measures. These include ED complementarity measures designed with the similar aim of calculating and predicting features gains and losses as we gain or lose areas in conservation planning. He concludes by indicating that ED methods appear to offer a robust framework for global assessments and for long-term monitoring of biodiversity change.

In chapter “Phylogenetic Diversity Measures and Their Decomposition: A Framework Based on Hill Numbers”, Anne Chao, Chun-Huo Chiu and Lou Jost develop a set of tools for integrating species abundances in PD calculations. This proposition enlarges the range of applications of the PD framework, making it a very useful tool for monitoring changes in biodiversity and warning about important changes in abundance before species become actually extinct. This framework is based on Hill numbers, describing the “effective number of species” found in a sample or region. Here Chao et al. provide a rich overview of abundance-based diversity measures and their phylogenetic generalizations, the framework of Hill numbers, phylogenetic Hill numbers and related phylogenetic diversity measures. They also review the diversity decomposition based on phylogenetic diversity measures and present the associated phylogenetic similarity and differentiation. With a real example, they illustrate how to use phylogenetic similarity (or differentiation) profiles to assess phylogenetic resemblance or difference among multiple assemblages either in space or time.

Phylogenetic reconstructions often result in different near-optimal alternative trees, particularly due to conflicting information among different characters. What do we do as conservation biologists when the phylogenetic reconstruction leads to multiple trees with conflicting signals? This problem is here addressed by a contribution by Olga Chernomor et al. (chapter “Split Diversity: Measuring and Optimizing Biodiversity Using Phylogenetic Split Networks”) with a proposition of combining the concepts of phylogenetic diversity and split networks in a single concept of phylogenetic split diversity. They show how split diversity works and design its application and the computation solution in biodiversity optimization for some well-known problems of taxon selection and reserve selection, exploring how to include taxon viability and budget in this kind of analysis.

The extent to which sampling effort might influence the rank of conservation priorities is long recognized as a central issue in selecting areas for conservation (Mace and Lande 1991; Mckinney 1999; Régnier et al. 2009), but has so far remained practically untouched in the study of conservation of phylogenetic diversity. Here we have the opportunity to present three different approaches to this problem. The convergence of these independent studies shows the importance of this subject and the recognition of the urgency of searching for solutions. In chapter “The Rarefaction of Phylogenetic Diversity: Formulation, Extension and Application”, David Nipperess deals with this question in the PD framework by further developing the rarefaction of PD first proposed by Nipperess and Matsen (2013). Here he provides a detailed formulation for the exact analytical solution for expected (mean) Phylogenetic Diversity for a given amount of sampling effort in which whole branch segments are selected under rarefaction. In addition, he extends this framework to show how the initial slope of the rarefaction curve (∆PD) can be used as a flexible measure of phylogenetic evenness, phylogenetic beta-diversity or phylogenetic dispersion, depending on the unit of accumulation.

In chapters “Support in Area Prioritization Using Phylogenetic Information” and “Assessing Hotspots of Evolutionary History with Data from Multiple Phylogenies: An Analysis of Endemic Clades from New Caledonia”, the question of resampling and support of the dataset for defining priority areas is studied in the framework of evolutionary distinctiveness (ED). In chapter “Support in Area Prioritization Using Phylogenetic Information”, Daniel Rafael Miranda-Esquivel develops one scheme to verify the support for area ranking using a jackknife resampling strategy. In this proposition, one can evaluate the more adequate index and the support of the area ranking with different probability values when deleting phylogenies, and/or areas and/or species. In chapter “Assessing Hotspots of Evolutionary History with Data from Multiple Phylogenies: An Analysis of Endemic Clades from New Caledonia”, we and our collaborators Antje Ahrends and Pete Hollingsworth, propose a scheme for solving the problem of sampling bias in datasets with phylogenies coming from independent and so, non-standardized, spatial sampling. We use the rarefaction of phylogenies to assess the role of the number of phylogenies, of species richness and of the influence of individual phylogenies on site’s scores. And then we design a resampling strategy using multiple phylogenies to verify the stability of the results. This method is applied to the case of New Caledonia, a megadiverse island with all locations equally rich in microendemic species and where phylogenetic diversity is especially helpful to determine conservation priorities among sites.

Applications

This last section is composed by contributions exploring the application of phylogenetic diversity methods in study cases. These studies are deliberately diverse in approaches of the use and applications of phylogenetic diversity, and of measures, spatial scales, geographic locations and taxonomic groups as well. It starts with two analyses integrating the conservation of evolutionary history in systematic conservation planning, a field of conservation biology that deals with conservation prioritization taking in account multiple factors, and in which we can define and revise pre-established criteria and goals (Margules and Pressey 2000; Ball et al. 2009; Moilanen et al. 2009; Kukkala and Moilanen 2013).

In chapter “Representing Hotspots of Evolutionary History in Systematic Conservation Planning for European Mammals” Arponen and Zupan use the Zonation software for spatial prioritization to prioritize areas for conservation of the evolutionary history of mammals in Europe. With an analysis at continental and at the scale of each European country, they show that: (a) a strategy focusing only on species richness would miss some areas with important levels of evolutionary history, mainly in regions with medium or low values of species richness; (b) the present system of protected areas performs worse than random selections for protecting the evolutionary history of mammals; and (c) a strategy to protect mammals at the continental scale would be much more effective than separated strategies for each country, although from a political point of view this last one is likely to be more feasible.

In the following contribution, Silvano et al. (chapter “Priorities for Conservation of the Evolutionary History of Amphibians in the Cerrado”) use a Gap Analysis to evaluate the protection status of 82 anuran species endemic from Brazilian Cerrado and to define priority areas for their conservation. Their results indicate an alarming situation in which 39 (48 %) endemic and restricted range species are completely unprotected, among them species with very high ED values, and other 43 (52 %) are gap species with less than 20 % of their targets met. The priority areas for the conservation of these species mostly occupy the central portion of the biome, a region that already suffered major habitat destruction, and are forecast to undergo important habitat loss if economic scenario remains unchanged.

The following triad of studies explores the integration of species threat and phylogenetic diversity. It starts with the research of May-Collado, Zambrana-Torrelio and Agnarsson (chapter “Global Spatial Analyses of Phylogenetic Conservation Priorities for Aquatic Mammals”) dealing with the prioritization of areas for conservation of 127 marine mammals worldwide. Here they use the EDGE (Isaac et al. 2007) and HEDGE (Steel et al. 2007) measures to provide the first spatial analysis for phylogenetic conservation priorities incorporating threat information at global scale. By assessing conservation under “pessimistic” and “optimistic” IUCN extinction scenarios they show how fragile is the world system of protected areas to conserve the evolutionary distinctiveness of marine mammals. They identified 22 Conservation PriorityAreas all over the world and showed that only 11.5 % of them overlap with existing marine protected areas. Their results complete prior findings on conservation prioritization for marine mammals, providing a helpful tool for the Conservation of Biological Diversity plan to protect 10 % of world’s marine and coastal regions by 2020.

In the next contribution, Jessica Schnell and Kamran Safi (chapter “Metapopulation Capacity Meets Evolutionary Distinctness: Spatial Fragmentation Complements Phylogenetic Rarity in Prioritization”) design a framework to predict threat status of Data Deficient and Least Concern species. They propose to combine evolutionary distinctiveness with metapopulation capacity derived from habitat isolation. Here they apply this framework to terrestrial mammals endemic of oceanic islands worldwide, and show that balancing between extinction risks associated to island’s isolation and potential loss of evolutionarily unique species can be very useful to characterize conservation status of island endemic species. Based on it they show that islands such as Guadalcanal, Isle of Pines, Madagascar and Nggela Sule are very representative for reducing the extinction of mammals with high ED values.

In chapter “Patterns of Species, Phylogenetic and Mimicry Diversity of Clearwing Butterflies in the Neotropics”, Chazot et al. explore the patterns of distribution of several features of diversity of three genera of ithomiine butterflies in Neotropical Region. Ithomiine display Müllerian mimetism and numerically dominate many butterfly assemblages across the Neotropics, probably conditioning the distribution of other species that interact with them in positive or negative way. So, the loss of ithomiine species in local assemblages may strongly influence the vulnerability of butterfly assemblages. Here they show that, on the one hand, the pattern of distribution of phylogenetic diversity, species richness, and mimicry diversity are highly congruent within genera, and, in a lesser extent, across genera. On the other hand, the potential loss of species due to disruption of mimicry rings, as captured by a measure of vulnerability designed in this study, are not evenly distributed across genera presenting peaks in areas completely distinct of those observed to the other features. This is a good example of the “agony of choice” of Vane-Wright et al. (1991) illustrating the difficulty of finding an optimal solution in situations in which several parameters account for the existing biodiversity.

We close this section with a note of optimism. The analysis of Soulebeau et al. (chapter “Conservation of Phylogenetic Diversity in Madagascar’s Largest Endemic Plant Family, Sarcolaenaceae”) shows that the system of protected areas of Madagascar is likely to protect all lineages and 97 % of the phylogenetic diversity of Sarcolaenaceae, the largest endemic plant family of this island. This result is particularly important because neither Sarcolaenaceae nor phylogenetic diversity were specifically considered in the conception or in the recent expansion of Madagascar’s network of protected area (Kremen et al. 2008), showing that a large system of protected area may capture much more biodiversity components and features than originally expected.

For concluding, in the last chapter we – Roseli Pellens, Dan Faith and Philippe Grandcolas – describe the recent transformations of phylogenetic systematics in the light of new facilities of molecular sequencing and data analysis, and discuss its impacts in biological conservation. We finish by exploring the possibility of defining “planetary boundaries” for biodiversity on the basis of phylogenetic diversity, and its important role in linking biodiversity into broader societal perspectives and needs.

References

  1. Arponen A (2012) Prioritizing species for conservation planning. Biodivers Conserv 21(4):875–893. doi:10.1007/S10531-012-0242-1 CrossRefGoogle Scholar
  2. Ball IR, Possingham HP, Watts M (2009) Chapter 14: Marxan and relatives: software for spatial conservation prioritisation. In: Moilanen A, Wilson KA, Possingham HP (eds) Spatial conservation prioritisation: quantitative methods and computational tools. Oxford University Press, Oxford, pp 185–195Google Scholar
  3. Barnosky AD, Matzke N, Tomiya S et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471(7336):51–57. doi:10.1038/Nature09678 CrossRefPubMedGoogle Scholar
  4. Barnosky AD, Hadly EA, Bascompte J et al (2012) Approaching a state shift in Earth’s biosphere. Nature 486(7401):52–58. doi:10.1038/Nature11018 CrossRefPubMedGoogle Scholar
  5. Brooks TM, Cuttelod A, Faith DP, Garcia-Moreno J, Langhammer P, Perez-Espona S (2015) Why and how might genetic and phylogenetic diversity be reflected in the identification of key biodiversity areas? Philos Trans R Soc B 370(1662). doi: 10.1098/Rstb.2014.0019
  6. Buerki S, Callmander MW, Bachman S et al (2015) Incorporating evolutionary history into conservation planning in biodiversity hotspots. Philos Trans R Soc B 370(1662). doi: 10.1098/Rstb.2014.0014
  7. Cadotte MW, Davies TJ (2010) Rarest of the rare: advances in combining evolutionary distinctiveness and scarcity to inform conservation at biogeographical scales. Divers Distrib 16(3):376–385. doi:10.1111/J.1472-4642.2010.00650.X CrossRefGoogle Scholar
  8. Chao A, Chiu CH, Jost L (2010) Phylogenetic diversity measures based on Hill numbers. Philos Trans R Soc B 365(1558):3599–3609. doi:10.1098/Rstb.2010.0272 CrossRefGoogle Scholar
  9. Davies TJ (2015) Losing history: how extinctions prune features from the tree of life. Philos Trans R Soc B 370(1662). doi:10.1098/Rstb.2014.0006
  10. Davies TJ, Cadotte MW (2011) Quantifying biodiversity: does it matter what we measure? In: Zachos FE, Habel JC (eds) Biodiversity hotspots: distribution and protection of conservation priority areas. Springer, Berlin, pp 43–60CrossRefGoogle Scholar
  11. Davies TJ, Fritz SA, Grenyer R et al (2008) Phylogenetic trees and the future of mammalian biodiversity. Proc Natl Acad Sci U S A 105:11556–11563CrossRefPubMedPubMedCentralGoogle Scholar
  12. Eldredge N, Cracraft J (1980) Phylogenetic patterns and the evolutionary process: method and theory in comparative biology. Columbia University Press, New YorkGoogle Scholar
  13. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61(1):1–10CrossRefGoogle Scholar
  14. Faith DP (2015) Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses. Philos Trans R Soc B 370(1662). doi:10.1098/Rstb.2014.0011
  15. Faith DP, Richards Z (2012) Climate change impacts on the tree of life: changes in phylogenetic diversity illustrated for Acropora corals. Biology 1:906–932CrossRefPubMedPubMedCentralGoogle Scholar
  16. Faith DP, Magallon S, Hendry AP et al (2010) Evosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Curr Opin Environ Sustain 2(1–2):66–74. doi:10.1016/J.Cosust.2010.04.002 CrossRefGoogle Scholar
  17. Forest F, Grenyer R, Rouget M et al (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445(7129):757–760CrossRefPubMedGoogle Scholar
  18. Forest F, Crandall KA, Chase MW, Faith DP (2015) Phylogeny, extinction and conservation: embracing uncertainties in a time of urgency. Philos Trans R Soc B 370(1662). Artn 20140002. doi:10.1098/Rstb.2014.0002
  19. Fritz SA, Purvis A (2010) Phylogenetic diversity does not capture body size variation at risk in the world’s mammals. Proc R Soc B Biol Sci 277(1693):2435–2441. doi:10.1098/Rspb.2010.0030 CrossRefGoogle Scholar
  20. Fritz SA, Bininda-Emonds ORP, Purvis A (2009) Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol Lett 12(6):538–549. doi:10.1111/J.1461-0248.2009.01307.X CrossRefPubMedGoogle Scholar
  21. Gaston KJ (1996) Species richness: measures and measurements. In: Gaston KJ (ed) Biodiversity: a biology of numbers and differences. Blackwell Science, Oxford, pp 77–113Google Scholar
  22. Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227CrossRefPubMedGoogle Scholar
  23. Grandcolas P, Nattier R, Legendre F, Pellens R (2010) Mapping extrinsic traits such as extinction risks or modelled bioclimatic niches on phylogenies: does it make sense at all? Cladistics 26:1–5CrossRefGoogle Scholar
  24. Gudde RM, Joy JB, Mooers AO (2013) Imperilled phylogenetic endemism of Malagasy lemuriformes. Divers Distrib 19(7):664–675. doi:10.1111/Ddi.12023 CrossRefGoogle Scholar
  25. Hartmann K, André J (2013) Should evolutionary history guide conservation? Biodivers Conserv 22:449–458CrossRefGoogle Scholar
  26. Hartmann K, Steel MA (2007) Phylogenetic diversity: from combinatorics to ecology. In: Gascuel O, Steel MA (eds) Reconstructing evolution: new mathematical and computational advances. Oxford University Press, OxfordGoogle Scholar
  27. Hennig W (1966) Phylogenetic systematics. University of Illinois Press, UrbanaGoogle Scholar
  28. Hoffmann M, Hilton-Taylor C, Angulo A et al (2010) The impact of conservation on the status of the world’s vertebrates. Science 330(6010):1503–1509. doi:10.1126/Science.1194442 CrossRefPubMedGoogle Scholar
  29. Huang DW, Roy K (2015) The future of evolutionary diversity in reef corals. Philos Trans R Soc B 370(1662). Artn 20140010. doi:10.1098/Rstb.2014.0010
  30. Huang S, Stephens PR, Gittleman JL (2012) Traits, trees and taxa: global dimensions of biodiversity in mammals. Proc R Soc B Biol Sci 279(1749):4997–5003. doi:10.1098/rspb.2012.1981 CrossRefGoogle Scholar
  31. Isaac NJB, Turvey ST, Collen B, Waterman C, Baillie JEM (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 3:e296CrossRefGoogle Scholar
  32. Jono CMA, Pavoine S (2012) Threat diversity will erode mammalian phylogenetic diversity in the near future. PLoS ONE 7(9). ARTN e46235. doi:10.1371/journal.pone.0046235
  33. Kier G, Kreft H, Lee TM et al (2009) A global assessment of endemism and species richness across island and mainland regions. Proc Natl Acad Sci U S A 106(23):9322–9327CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kremen C, Cameron A, Moilanen A et al (2008) Aligning conservation priorities across taxa in Madagascar, a biodiversity hotspot, with high-resolution planning tools. Science 320:222–226CrossRefPubMedGoogle Scholar
  35. Kukkala AS, Moilanen A (2013) Core concepts of spatial prioritisation in systematic conservation planning. Biol Rev 88(2):443–464. doi:10.1111/Brv.12008 CrossRefPubMedGoogle Scholar
  36. Kuntner M, May-Collado LJ, Agnarsson I (2011) Phylogeny and conservation priorities of afrotherian mammals (Afrotheria, Mammalia). Zool Scr 40(1):1–15CrossRefGoogle Scholar
  37. Lehman SM (2006) Conservation biology of Malagasy Strepsirhines: a phylogenetic approach. Am J Phys Anthropol 130:238–253CrossRefPubMedGoogle Scholar
  38. Lenzen M, Moran D, Kanemoto K et al (2012) International trade drives biodiversity threats in developing nations. Nature 486(7401):109–112. doi:10.1038/Nature11145 CrossRefPubMedGoogle Scholar
  39. López-Osorio F, Miranda Esquivel DR (2010) A phylogenetic approach to conserving Amazonian biodiversity. Conserv Biol 24(5):1359–1366CrossRefPubMedGoogle Scholar
  40. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mace GM, Lande R (1991) Assessing extinction threats: toward a reevaluation of IUCN threatened species categories. Conserv Biol 5:148–157CrossRefGoogle Scholar
  42. Mace GM, Purvis A (2008) Evolutionary biology and practical conservation: bridging a widening gap. Mol Ecol 17(1):9–19CrossRefPubMedGoogle Scholar
  43. Mace GM, Gittleman JL, Purvis A (2003) Preserving the tree of life. Science 300:1707–1709CrossRefPubMedGoogle Scholar
  44. Mace GM, Masundire H, Baillie JEM (2005) Millennium ecosystem assessment: current states and trends – biodiversity. Island Press, Washington, DCGoogle Scholar
  45. Mace GM, Cramer W, Diaz S et al (2010) Biodiversity targets after 2010. Curr Opin Environ Sustain 2(1–2):3–8. doi:10.1016/J.Cosust.2010.03.003 CrossRefGoogle Scholar
  46. Mace GM, Reyers B, Alkemade R et al (2014) Approaches to defining a planetary boundary for biodiversity. Global Environ Chang 28:289–297. doi:10.1016/J.Gloenvcha.2014.07.009 CrossRefGoogle Scholar
  47. MacLaurin J, Sterelny K (2008) What is biodiversity? The University of Chicago Press, ChicagoCrossRefGoogle Scholar
  48. Magnuson-Ford K, Mooers AO, RiouxPaquette S, Steel MA (2010) Comparing strategies to preserve evolutionary diversity. J Theor Biol 266:107–116CrossRefPubMedGoogle Scholar
  49. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253CrossRefPubMedGoogle Scholar
  50. May RM (1990) Taxonomy as destiny. Nature 347:129–130CrossRefGoogle Scholar
  51. McCarthy DP, Donald PF, Scharlemann JPW et al (2012) Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338(6109):946–949. doi:10.1126/Science.1229803 CrossRefPubMedGoogle Scholar
  52. McGoogan K, Kivell T, Hutchison M et al (2007) Phylogenetic diversity and the conservation biogeography of African primates. J Biogeogr 34(11):1962–1974Google Scholar
  53. McKinney ML (1999) High rates of extinction and threat in poorly studied taxa. Conserv Biol 13:1273–1281CrossRefGoogle Scholar
  54. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DCGoogle Scholar
  55. Moilanen A, Kujala H, Leathwick J (2009) The zonation framework and software for conservation prioritization. In: Moilanen A, Wilson KH, Possingham HP (eds) Spatial conservation prioritization: quantitative methods and computational tools. Oxford University Press, Oxford, pp 196–210Google Scholar
  56. Mooers AO, Heard SB, Chrostowski E (2005) Evolutionary heritage as a metric for conservation. In: Purvis A, Gittleman JL, Brooks T (eds) Phylogeny and conservation, vol 8, Conservation biology. Cambridge University Press, London, pp 120–138CrossRefGoogle Scholar
  57. Myers N (2003) Biodiversity hotspots revisited. Bioscience 53(10):916–917CrossRefGoogle Scholar
  58. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  59. Nee S, May RM (1997) Extinction and the loss of evolutionary history. Science 278:692–694CrossRefPubMedGoogle Scholar
  60. Nipperess DA, Matsen FA (2013) The mean and variance of phylogenetic diversity under rarefaction. Methods Ecol Evol 4(6):566–572. doi:10.1111/2041-210x.12042 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Nunes LA, Turvey ST, Rosindell J (2015) The price of conserving avian phylogenetic diversity: a global prioritization approach. Philos Trans R Soc B 370(1662). doi:10.1098/Rstb.2014.0004
  62. O’Hara RJ (1992) Telling the tree: narrative representation and the study of evolutionary history. Biol Phil 7:135–160CrossRefGoogle Scholar
  63. Pavoine S, Ollier S, Dufour AB (2005) Is the originality of a species measurable? Ecol Lett 8:579–586CrossRefGoogle Scholar
  64. Pereira HM, Leadley PW, Proenca V et al (2010) Scenarios for global biodiversity in the 21st century. Science 330(6010):1496–1501. doi:10.1126/Science.1196624 CrossRefPubMedGoogle Scholar
  65. Pereira HM, Ferrier S, Walters M et al (2013) Essential biodiversity variables. Science 339(6117):277–278. doi:10.1126/Science.1229931 CrossRefPubMedGoogle Scholar
  66. Pio DV, Broennimann O, Barraclough TG, Reeves G, Rebelo AG, Thuiller W, Guisan A, Salamin N (2011) Spatial predictions of phylogenetic diversity in conservation decision making. Conserv Biol 25(6):1229–1239. doi:10.1111/J.1523-1739.2011.01773.X CrossRefPubMedGoogle Scholar
  67. Polasky S, Csuti B, Vossler CA, Meyers SM (2002) A comparison of taxonomic distinctness versus richness as criteria for setting conservation priorities for North American birds. Biol Conserv 97:99–105CrossRefGoogle Scholar
  68. Pollock LJ, Rosauer DF, Thornhill AH et al (2015) Phylogenetic diversity meets conservation policy: small areas are key to preserving eucalypt lineages. Philos Trans R Soc B 370(1662). Unsp 20140007. doi:10.1098/Rstb.2014.0007
  69. Posadas P, Miranda Esquivel DR, Crisci JV (2001) Using phylogenetic diversity measures to set priorities in conservation: an example from Southern South America. Conserv Biol 15(5):1325–1334CrossRefGoogle Scholar
  70. Possingham HP, Andelman S, Burgman MA et al (2002) Limits to the use of threatened species lists. Trends Ecol Evol 17:503–507CrossRefGoogle Scholar
  71. Proença V, Pereira HM (2013) Comparing extinction rates: past, present, and future. Encycl Biodivers 2:167–176CrossRefGoogle Scholar
  72. Purvis A (2008) Phylogenetic approaches to the study of extinction. Ann Rev Ecol Evol 39:301–319. doi:10.1146/Annurev-Ecolsys-063008-102010 CrossRefGoogle Scholar
  73. Purvis A, Gittleman JL, Brooks T (eds) (2005) Phylogeny and conservation, vol 39, Conservation biology 8. Cambridge University Press, CambridgeGoogle Scholar
  74. Redding DW, Mooers AO (2006) Incorporating evolutionary measures into conservation prioritization. Conserv Biol 20(6):1670–1678CrossRefPubMedGoogle Scholar
  75. Redding DW, Mooers AO, Sekercioglu CH, Collen B (2015) Global evolutionary isolation measures can capture key local conservation species in Nearctic and Neotropical bird communities. Philos Trans R Soc B 370: 20140013Google Scholar
  76. Régnier C, Fontaine B, Bouchet P (2009) Not knowing, not recording, not listing: numerous unnoticed Mollusk extinctions. Conserv Biol 23:1214–1221CrossRefPubMedGoogle Scholar
  77. Rodrigues ASL, Gaston KJ (2002) Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol Conserv 105:103–111CrossRefGoogle Scholar
  78. Rodrigues AS, Brooks TM, Gaston KJ (2005) Integrating phylogenetic diversity in the selection of priority areas for conservation: does it make a difference? In: Purvis A, Gittleman JL, Brooks T (eds) Phylogeny and conservation. Cambridge University Press, Cambridge, pp 101–119CrossRefGoogle Scholar
  79. Rodrigues ASL, Grenyer R, Baillie JEM et al (2011) Complete, accurate, mammalian phylogenies aid conservation planning, but not much. Philos Trans R Soc B 366(1578):2652–2660. doi:10.1098/Rstb.2011.0104 CrossRefGoogle Scholar
  80. Rosauer D, Laffan SW, Crisp MD, Donnellan SC, Cook LG (2009) Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Mol Ecol 18(19):4061–4072. doi:10.1111/J.1365-294x.2009.04311.X CrossRefPubMedGoogle Scholar
  81. Safi K, Cianciaruso MV, Loyola RD et al (2011) Understanding global patterns of mammalian functional and phylogenetic diversity. Philos Trans R Soc B 366(1577):2536–2544. doi:10.1098/Rstb.2011.0024 CrossRefGoogle Scholar
  82. Sarkar SK (2005) Biodiversity and environmental philosophy: an introduction. Cambridge studies in philosophy and biology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  83. Schweiger O, Klotz S, Durka W, Kühn I (2008) A comparative test of phylogenetic diversity indices. Oecologia 257:485–495CrossRefGoogle Scholar
  84. Steel M, Mimoto A, Mooers AO (2007) Hedging our bets: the expected contribution of species to future phylogenetic diversity. Evol Bioinforma 3:237–244Google Scholar
  85. Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB (2011) Consequences of climate change on the tree of life in Europe. Nature 470(7335):531–534. doi:10.1038/Nature09705 CrossRefPubMedGoogle Scholar
  86. Thuiller W, Maiorano L, Mazel F et al (2015) Conserving the functional and phylogenetic trees of life of European tetrapods. Philos Trans R Soc B 370(1662). Artn 20140005. doi:10.1098/Rstb.2014.0005
  87. Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect? Systematics and the agony of choice. Biol Conserv 55:235–254CrossRefGoogle Scholar
  88. Walker PA, Faith DP (1994) Procedures for conservation evaluation based on phylogenetic diversity. Biodivers Lett 2(5):132–139CrossRefGoogle Scholar
  89. Weitzman ML (1998) The Noah’s Ark problem. Econometrica 66(6):1279–1298. doi:10.2307/2999617 CrossRefGoogle Scholar
  90. Wiley EO (1981) Phylogenetics. The theory and practice of phylogenetic systematics. Wiley-Liss, New YorkGoogle Scholar
  91. Yessoufou K, Daru BH, Davies J (2012) Phylogenetic patterns of extinction risk in the eastern Arc ecosystems, an African biodiversity hotspot. PLoS ONE 7(10):e47082CrossRefPubMedPubMedCentralGoogle Scholar
  92. Zupan L, Cabeza M, Maiorano L et al (2014) Spatial mismatch of phylogenetic diversity across three vertebrate groups and protected areas in Europe. Biodivers Conserv 20(6):674–685. doi:10.1111/Ddi.12186 Google Scholar

Copyright information

© The Author(s) 2016

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-Noncommercial 2.5 License (http://creativecommons.org/licenses/by-nc/2.5/) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

The images or other third party material in this chapter are included in the work’s Creative Commons license, unless indicated otherwise in the credit line; if such material is not included in the work’s Creative Commons license and the respective action is not permitted by statutory regulation, users will need to obtain permission from the license holder to duplicate, adapt or reproduce the material.

Authors and Affiliations

  1. 1.Institut de Systématique, Evolution, Biodiversité, ISYEB – UMR 7205 CNRS MNHN UPMC EPHE, Muséum National d’Histoire NaturelleSorbonne UniversitésParisFrance

Personalised recommendations