Physical-Layer Key Generation and Reconciliation

  • Jon Wallace
  • Rashid Mehmood
  • Rajesh Sharma
  • Werner Henkel
  • Oana Graur
  • Nazia Islam
  • Alexandra Filip
Part of the Signals and Communication Technology book series (SCT)


Physical layer security is a technique that makes use of the physical communication channel or medium to provide additional robustness to eavesdroppers and attackers. Key establishment exploiting a multiple-input multiple-output (MIMO) reciprocal wireless channel is proposed and its performance investigated, indicating that secure keys can be rapidly generated between two nodes, even in the presence of close eavesdroppers. The use of reconfigurable antennas is investigated and experimentally proven as a key establishment solution for static channels with limited multipath. Additionally, different options are discussed to handle key-differences due to non-correlated noise together with quantization, either by simply introducing guard intervals or by joint source coding with LDPC codes.


Side Information Variable Node MIMO Channel Guard Band Wiretap Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the German Research Foundation (DFG) under Grants WA 2735/5-1/2 and HE 3654/11-1/2.


  1. 1.
    Ahlswede R, Csiszar I (1993) Common randomness in information theory and cryptography. I. Secret sharing. IEEE Trans Inf Theory 39:1121–1132CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Aono T, Higuchi K, Ohira T, Komiyama B, Sasaoka H (2005) Wireless secret key generation exploiting reactance-domain scalar response of multipath fading channels. IEEE Trans Antennas Propag 53:3776–3784CrossRefGoogle Scholar
  3. 3.
    Bloch M, Barros J (2011) Physical-layer security: from information theory to security engineering. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. 4.
    Bloch M, Thangaraj A, McLaughlin S, Merolla JM (2006a) LDPC-based Gaussian key reconciliation. In: Information theory workshop, 2006. ITW ’06 Punta del Este. IEEE, pp 116–120Google Scholar
  5. 5.
    Bloch MR, Thangaraj A, McLaughlin SW, Merolla JM (2006b) LDPC-based secret key agreement over the Gaussian wiretap channel. Proceedings of IEEE international symposium on information theory. Seattle, USA, pp 1179–1183Google Scholar
  6. 6.
    Chung SY, Richardson T, Urbanke R (2001) Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation. IEEE Trans Inf Theory 47(2):657–670CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Davey M, MacKay D (1998) Low-density parity check codes over GF(q). IEEE Commun Lett 2(6):165–167CrossRefGoogle Scholar
  8. 8.
    von Deetzen N, Sandberg S (2010) On the UEP capabilities of several LDPC construction algorithms. IEEE Trans Commun 58(11):3041–3046CrossRefGoogle Scholar
  9. 9.
    Etesami J, Henkel W (2012) LDPC code construction for wireless physical-layer key reconciliation. In: 1st IEEE international conference on communications in China (ICCC), pp 208–213Google Scholar
  10. 10.
    Filip A, Mehmood R, Wallace J, Henkel W (2013) Physical-layer key generation supported by RECAP antenna structures. In: 9th international ITG conference on systems, communication and coding (SCC), pp 1–6Google Scholar
  11. 11.
    Filip A, Mehmood R, Wallace J, Henkel W (2014) Variable guard band construction to support key reconciliation. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 8173–8177Google Scholar
  12. 12.
    Gersho A, Gray RM (1991) Vector quantization and signal compression. Kluwer Academic Publishers, NorwellGoogle Scholar
  13. 13.
    Goel S, Negi R (2008) Guaranteeing secrecy using artificial noise. IEEE Trans Wirel Commun 7:2180–2189CrossRefGoogle Scholar
  14. 14.
    Graur O, Islam N, Filip A, Henkel W (2015a) Quantization aspects in LDPC key reconciliation for physical layer security. In: 10th international ITG conference on systems, communications and coding SCC 2015, pp 1–6Google Scholar
  15. 15.
    Graur O, Islam N, Filip A, Henkel W (2016) Quantization and LLR computation for physical layer security. In: Proceedings of the International Zürich Seminar on Communications (IZS)Google Scholar
  16. 16.
    Hero AO III (2003) Secure space-time communication. IEEE Trans Inf Theory 49:3235–3249CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Islam N, Graur O, Henkel W, Filip A (2015) LDPC code design aspects for physical-layer key reconciliation. In: IEEE Global Communications Conference (Globecom) 2015Google Scholar
  18. 18.
    Jensen MA, Wallace JW (2004) A review of antennas and propagation for MIMO wireless communications. IEEE Trans Antennas Propag 52:2810–2824CrossRefGoogle Scholar
  19. 19.
    Kim H, Villasenor JD (2008) Secure MIMO communications in a system with equal numbers of transmit and receive antennas. IEEE Commun Lett 12:386–388CrossRefGoogle Scholar
  20. 20.
    Koorapaty H, Hassan A, Chennakeshu S (2000) Secure information transmission for mobile radio. IEEE Commun Lett 4:52–55CrossRefGoogle Scholar
  21. 21.
    Koyluoglu O, El Gamal H (2012) Polar coding for secure transmission and key agreement. IEEE Trans Inf Forensics Secur 7(5):1472–1483CrossRefGoogle Scholar
  22. 22.
    Li X, Ratazzi EP (2005) MIMO transmissions with information-theoretic secrecy for secret-key agreement in wireless networks. In: Proceedings of 2005 IEEE Military Communication Conference (MILCOM’05), Atlantic City, NJ, vol 3, pp 1353–1359Google Scholar
  23. 23.
    Linde Y, Buzo A, Gray R (1980) An algorithm for vector quantizer design. IEEE Trans Commun 28(1):84–95CrossRefGoogle Scholar
  24. 24.
    Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    MacKay D, Wilson S, Davey M (1999) Comparison of constructions of irregular Gallager codes. IEEE Trans Commun 47(10):1449–1454CrossRefGoogle Scholar
  26. 26.
    Massey J (1988) An introduction to contemporary cryptology. Proc IEEE 76:533–549CrossRefGoogle Scholar
  27. 27.
    Mathur S, Trappe W, Mandayam N, Ye C, Reznik A (2008) Radio-telepathy: extracting a secret key from an unauthenticated wireless channel. In: Proceedings of 14th ACM international conference on mobile computing and networking, San Francisco, CA, pp 128–139Google Scholar
  28. 28.
    Maurer U (1993) Secret key agreement by public discussion from common information. IEEE Trans Inf Theory 39:733–742CrossRefzbMATHGoogle Scholar
  29. 29.
    Maurer U, Wolf S (2003a) Secret-key agreement over unauthenticated public channels–part I: definitions and a completeness result. IEEE Trans Inf Theory 49:822–831CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Maurer U, Wolf S (2003b) Secret-key agreement over unauthenticated public channels–part III: privacy amplification. IEEE Trans Inf Theory 49:839–851CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Maurer U, Wolf S (2003c) Secret-key agreement over unauthenticated public channels–part II: the simulatability condition. IEEE Trans Inf Theory 49:832–838CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Max J (1960) Quantizing for minimum distortion. IEEE Trans Inf Theory 6(1):7–12CrossRefMathSciNetGoogle Scholar
  33. 33.
    Mehmood R, Wallace JW (2011) Wireless security enhancement using parasitic reconfigurable aperture antennas. Proceedings of the European conference on antennas and propagation. Italy, Rome, pp 2761–2765Google Scholar
  34. 34.
    Mehmood R, Wallace JW (2012) Experimental assessment of secret key generation using parasitic reconfigurable aperture antennas. Proceedings of the European conference on antennas and propagation. Czech Republic, Prague, pp 1151–1155Google Scholar
  35. 35.
    Mehmood R, Wallace JW (2012b) MIMO capacity enhancement using parasitic reconfigurable aperture antennas (RECAPs). IEEE Trans Antennas Propag 60:665–673CrossRefMathSciNetGoogle Scholar
  36. 36.
    Mehmood R, Wallace JW, Jensen MA (2014a) Key establishment employing reconfigurable antennas: impact of antenna complexity. IEEE Trans Wirel Commun 13:6300–6310CrossRefGoogle Scholar
  37. 37.
    Mehmood R, Wallace JW, Jensen MA (2014) Optimal array patterns for encryption key establishment in LOS channels. Proceedings of the IEEE antennas and propagation society international symposium. Memphis, TN, pp 478–479Google Scholar
  38. 38.
    Mehmood R, Wallace JW, Jensen MA (2014) Secure array synthesis. IEEE Trans Antennas Propag SubmittedGoogle Scholar
  39. 39.
    Mohammadi MS (2009) MIMO minimum leakage-physically secure wireless data transmission. Proceedings of the international conference application of information and communication technologies. Baku, Azerbaijan, pp 1–5Google Scholar
  40. 40.
    Ozarow LH, Wyner AD (1984) Wire-tap channel II. AT&T Bell Lab Tech J 63:2135–2157CrossRefzbMATHGoogle Scholar
  41. 41.
    Pierrot A, Chou R, Bloch M (2013) Experimental aspects of secret key generation in indoor wireless environments. In: IEEE 14th workshop on signal processing advances in wireless communications (SPAWC), pp 669–673Google Scholar
  42. 42.
    Pradhan SS, Ramchandran K (2003) Distributed source coding using syndromes (DISCUS): design and construction. IEEE Trans Inf Theory 49:626–643CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    Richardson T, Urbanke R (2001) The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans Inf Theory 47(2):599–618CrossRefMathSciNetzbMATHGoogle Scholar
  44. 44.
    Richardson T, Urbanke R (2004) Multi-edge type LDPC codesGoogle Scholar
  45. 45.
    Richardson T, Urbanke R (2008) Modern coding theory. Cambridge University PressGoogle Scholar
  46. 46.
    Richardson T, Shokrollahi M, Urbanke R (2001) Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans Inf Theory 47(2):619–637CrossRefMathSciNetzbMATHGoogle Scholar
  47. 47.
    Sandberg S, von Deetzen N (2010) Design of bandwidth-efficient unequal error protection LDPC codes. IEEE Trans Commun 58(3):802–811CrossRefGoogle Scholar
  48. 48.
    Sayeed A, Perrig A (2008) Secure wireless communications: secret keys through multipath. Proceedings of the 2008 IEEE international conference acoustics, speech, and signal processing. Las Vegas, NV, pp 3013–3016CrossRefGoogle Scholar
  49. 49.
    Sharma RK, Wallace JW (2010) Bit error rate and efficiency analysis of wireless reciprocal channel key generation. Proceedings of the IEEE conference on wireless information technology and systems. Honolulu, HI, pp 1–4Google Scholar
  50. 50.
    Sharma RK, Wallace JW (2011) Physical layer key generation methods for arbitrary fading channels. In: Proceedings of the 2011 IEEE antennas and propagation society international symposium, pp 1368–1371Google Scholar
  51. 51.
    Slepian D, Wolf J (1973) Noiseless coding of correlated information sources. IEEE Trans Inf Theory 19(4):471–480CrossRefMathSciNetzbMATHGoogle Scholar
  52. 52.
    Sun X, Wu X, Zhao C, Jiang M, Xu W (2010) Slepian-Wolf coding for reconciliation of physical layer secret keys. In: Wireless Communications and Networking Conference (WCNC), 2010 IEEE, pp 1–6Google Scholar
  53. 53.
    Thangaraj A, Dihidar S, Calderbank A, McLaughlin S, Merolla JM (2007) Applications of LDPC codes to the wiretap channel. IEEE Trans Inf Theory 53(8):2933–2945CrossRefMathSciNetGoogle Scholar
  54. 54.
    Van Assche G, Cardinal J, Cerf NJ (2004) Reconciliation of a quantum-distributed Gaussian key. IEEE Trans Inf Theory 50:394–400CrossRefzbMATHGoogle Scholar
  55. 55.
    Voicila A, Declercq D, Verdier F, Fossorier M, Urard P (2010) Low-complexity decoding for non-binary LDPC codes in high order fields. IEEE Trans Commun 58(5):1365–1375CrossRefGoogle Scholar
  56. 56.
    Wallace J (2009) Secure physical layer key generation schemes: performance and information theoretic limits. Proceedings of the IEEE international conference on communications. Dresden, Germany, pp 1–4Google Scholar
  57. 57.
    Wallace JW, Sharma RK (2010) Automatic secret keys from reciprocal MIMO wireless channels: measurement and analysis. IEEE Trans Inf Forensics Secur 5:381–392CrossRefGoogle Scholar
  58. 58.
    Wilson R, Tse D, Scholtz RA (2007) Channel identification: secret sharing using reciprocity in ultrawideband channels. IEEE Trans Inf Forensics Secur 2:364–375CrossRefGoogle Scholar
  59. 59.
    Wyner A (1975) The wire-tap channel. Bell Syst Tech J 54(8):1355–1387CrossRefMathSciNetzbMATHGoogle Scholar
  60. 60.
    Ye C, Reznik A, Shah Y (2006) Extracting secrecy from jointly Gaussian random variables. Proceedings of IEEE international symposium on information theory. Seattle, WA, pp 2593–2597Google Scholar
  61. 61.
    Ye C, Reznik A, Sternberg G, Shah Y (2007) On the secrecy capabilities of ITU channels. In: Proceedings of the 66th IEEE vehicular technology conference, Baltimore, MDGoogle Scholar
  62. 62.
    Ye C, Mathur S, Reznik A, Shah Y, Trappe W, Mandayam NB (2010) Information-theoretically secret key generation for fading wireless channels. IEEE Trans Inf Forensics Secur 5:240–254CrossRefGoogle Scholar
  63. 63.
    Zhou X, Kyritsi P, Eggers P, Fitzek F (2007) The medium is the message: secure communication via waveform coding in MIMO systems. Proceedings of the IEEE 65th vehicular technology conference. Dublin, Ireland, pp 491–495Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jon Wallace
    • 1
  • Rashid Mehmood
    • 2
  • Rajesh Sharma
    • 3
  • Werner Henkel
    • 4
  • Oana Graur
    • 4
  • Nazia Islam
    • 4
  • Alexandra Filip
    • 5
  1. 1.Lafayette CollegeEastonUSA
  2. 2.Brigham Young UniversityProvoUSA
  3. 3.Ilmenau University of TechnologyIlmenauGermany
  4. 4.Jacobs University BremenBremenGermany
  5. 5.DLRWeßlingGermany

Personalised recommendations