Skip to main content

Imaging Living Yeast Cells and Quantifying Their Biophysical Properties by Atomic Force Microscopy

  • Chapter
  • First Online:
Advanced Microscopy in Mycology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Most studies of yeast cells focus on seeing them from the “inside,” while atomic force microscopy (AFM) allows discoveries of the yeast cell wall from the “outside.” This powerful technology has allowed researchers to ask new questions about yeast cells and to give new insights into the cell wall of yeasts, from not only a morphological point of view but also a nanomechanical and functional point of view. Recent advances in AFM have made it possible to image yeast cells and to quantify their biophysical properties simultaneously. In this chapter, we first introduce the prerequisites for using AFM on yeast cells (i.e., immobilization methods). Then, we focus on the insights AFM has offered into the morphology of the yeast cell wall. In the third section, we show how nanomechanical studies of the yeast cell wall can enlighten and give important insight into complex biological phenomena. Finally, we discuss the possibility of functionalizing the AFM tip for single-molecule experiments or to measure cell–cell surface interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adya AK, Canetta E, Walker GM (2006) Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe. FEMS Yeast Res 6:120–128

    Article  CAS  PubMed  Google Scholar 

  • Ahimou F, Touhami A, Dufrêne YF (2003) Real-time imaging of the surface topography of living yeast cells by atomic force microscopy. Yeast Chichester Engl 20:25–30

    Article  CAS  Google Scholar 

  • Aimanianda V et al (2009) Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460:1117–1121

    Article  CAS  PubMed  Google Scholar 

  • Alsteens D, Dague E, Rouxhet PG, Baulard AR, Dufrêne YF (2007) Direct Measurement of hydrophobic forces on cell surfaces using AFM. Langmuir 23:11977–11979

    Article  CAS  PubMed  Google Scholar 

  • Alsteens D et al (2008) Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM. Nanotechnology 19:384005

    Article  PubMed  Google Scholar 

  • Alsteens D, Garcia MC, Lipke PN, Dufrêne YF (2010) Force-induced formation and propagation of adhesion nanodomains in living fungal cells. Proc Natl Acad Sci U S A 107:20744–20749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alsteens D, Van Dijck P, Lipke PN, Dufrêne YF (2013) Quantifying the forces driving cell–cell adhesion in a fungal pathogen. Langmuir 29:13473–13480

    Article  CAS  PubMed  Google Scholar 

  • Beaussart A et al (2012) Single-molecule imaging and functional analysis of als adhesins and mannans during Candida albicans morphogenesis. ACS Nano 6:10950–10964

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beaussart A et al (2013) Single-cell force spectroscopy of the medically important Staphylococcus epidermidis-Candida albicans interaction. Nanoscale 5:10894–10900

    Article  CAS  PubMed  Google Scholar 

  • Beever RE, Dempsey GP (1978) Function of rodlets on the surface of fungal spores. Nature 272:608–610

    Article  CAS  PubMed  Google Scholar 

  • Binnig G, Quate CF (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  PubMed  Google Scholar 

  • Bowen WR, Lovitt RW, Wright CJ (2000) Direct quantification of Aspergillus niger spore adhesion to mica in air using an atomic force microscope. Colloid Surf Physicochem Eng Asp 173:205–210

    Article  CAS  Google Scholar 

  • Bowen WR, Lovitt RW, Wright CJ (2001) Atomic force microscopy study of the adhesion of Saccharomyces cerevisiae. J Colloid Interface Sci 237:54–61

    Article  CAS  PubMed  Google Scholar 

  • Canetta E, Adya AK, Walker GM (2006) Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology. FEMS Microbiol Lett 255:308–315

    Article  CAS  PubMed  Google Scholar 

  • Chaffin WL (2008) Candida albicans cell wall proteins. Microbiol Mol Biol Rev 72:495–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chopinet L, Formosa C, Rols MP, Duval RE, Dague E (2013) Imaging living cells surface and quantifying its properties at high resolution using AFM in QITM mode. Micron 48:26–33

    Article  CAS  PubMed  Google Scholar 

  • Dague E et al (2007) Chemical force microscopy of single live cells. Nano Lett 7:3026–3030

    Article  CAS  PubMed  Google Scholar 

  • Dague E, Delcorte A, Latge JP, Dufrene YF (2008a) Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis. Langmuir 24:2955–2959

    Article  CAS  PubMed  Google Scholar 

  • Dague E, Alsteens D, Latgé J-P, Dufrêne YF (2008b) High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia. Biophys J 94:656–660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dague E, Alsteens D, Latge J-P, Dufrene Y (2008c) High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia. Biophys J 94:1–5

    Article  Google Scholar 

  • Dague E, Bittar R, Durand F, Martin-Hyken H, François JM (2010) An atomic force microscopy analysis of yeast mutants defective in cell wall architecture. Yeast 27:673–784

    Article  CAS  PubMed  Google Scholar 

  • Dague E et al (2011) Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments. Nanotechnology 22:395102

    Article  CAS  PubMed  Google Scholar 

  • Denning DW (2003) Echinocandin antifungal drugs. Lancet 362:1142–1151

    Article  CAS  PubMed  Google Scholar 

  • Dufrêne YF, Boonaert CJP, Gerin PA, Asther M, Rouxhet PG (1999) Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium. J Bacteriol 181:5350–5354

    PubMed Central  PubMed  Google Scholar 

  • Dufrêne YF, Martínez-Martín D, Medalsy I, Alsteens D, Müller DJ (2013) Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat Methods 10:847–854

    Article  PubMed  Google Scholar 

  • Dupres V, Alsteens D, Pauwels K, Dufrêne YF (2009) In vivo imaging of S-layer nanoarrays on corynebacterium glutamicum. Langmuir 25:9653–9655

    Article  CAS  PubMed  Google Scholar 

  • Ebner A et al (2008) Functionalization of probe tips and supports for single-molecule recognition force microscopy. Top Curr Chem 285:29–76

    Article  CAS  PubMed  Google Scholar 

  • El-Kirat-Chatel S, Dufrêne YF (2012) Nanoscale imaging of the Candida–macrophage interaction using correlated fluorescence-atomic force microscopy. ACS Nano 6:10792–10799

    CAS  PubMed  Google Scholar 

  • El-Kirat-Chatel S et al (2013) Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans. Nanoscale 5:1105–1115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417

    Article  CAS  PubMed  Google Scholar 

  • Formosa C et al (2013) Nanoscale effects of caspofungin against two yeast species, Saccharomyces cerevisiae and Candida albicans. Antimicrob Agents Chemother 57:3498–3506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Formosa C, Pillet F, Schiavone M, Duval RE, Ressier L, Dague E (2015a) Generating living cells arrays for Atomic Force Microscopy studies. Nat Protoc 10(1):199–204

    Google Scholar 

  • Formosa C, Schiavone M, Boisrame A, Richard ML, Duval RE, Dague E (2015b) Multiparametric imaging of adhesive nanodomains at the surface of Candida albicans by Atomic Force Microscopy. Nanomedicine NBM 11:57–65

    Google Scholar 

  • Francius G, Domenech O, Mingeot-Leclercq MP, Dufrêne YF (2008) Direct observation of Staphylococcus aureus cell wall digestion by lysostaphin. J Bacteriol 190:7904–7909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Free SJ (2013) Fungal Cell Wall Organization and Biosynthesis. In: Friedman T, Dunlap JC, Goodwin SF (eds) Advances in genetics, vol 81. Academic Press, pp 33–82

    Google Scholar 

  • Gad M, Ikai A (1995) Method for immobilizing microbial cells on gel surface for dynamic AFM studies. Biophys J 69:2226–2233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gad M, Itoh A, Ikai A (1997) Mapping cell wall polysaccharides of living microbial cells using atomic force microscopy. Cell Biol Int 21:697–706

    Article  CAS  PubMed  Google Scholar 

  • Gilbert Y et al (2007) Single-molecule force spectroscopy and imaging of the vancomycin/d-Ala-d-Ala interaction. Nano Lett 7:796–801

    Article  CAS  PubMed  Google Scholar 

  • Gow NA, Hube B (2012) Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol 15:406–412

    Article  CAS  PubMed  Google Scholar 

  • Hertz H (1881) Ueber die Berührung fester elastischer Körper. J Reine Angew Math 92:156–171

    Google Scholar 

  • Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A 93:3477–3481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9:176–180

    Article  CAS  PubMed  Google Scholar 

  • Hoyer LL, Green CB, Oh S-H, Zhao X (2008) Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family—a sticky pursuit. Med Mycol 46:1–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jauvert E et al (2012) Probing single molecule interactions by AFM using bio-functionalized dendritips. Sens Actuators B Chem 168:436–441

    Article  CAS  Google Scholar 

  • Jensen E, Crossman DJ (2014) Technical review: types of imaging-direct STORM. Anat Rec Hoboken NJ. doi:10.1002/ar.22960

    Google Scholar 

  • Kamruzzahan ASM et al (2006) Antibody linking to atomic force microscope tips via disulfide bond formation. Bioconjug Chem 17:1473–1481

    Article  CAS  PubMed  Google Scholar 

  • Kasas S, Ikai A (1995) A method for anchoring round shaped cells for atomic force microscope imaging. Biophys J 68:1678–1680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lipke PN, Ovalle R (1998) Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 180:3735–3740

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Filler SG (2011) Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell 10:168–173

    Article  PubMed Central  PubMed  Google Scholar 

  • Louise Meyer R et al (2010) Immobilisation of living bacteria for AFM imaging under physiological conditions. Ultramicroscopy 110:1349–1357

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Snook LA, Kaminskyj SGW, Dahms TES (2005) Surface ultrastructure and elasticity in growing tips and mature regions of Aspergillus hyphae describe wall maturation. Microbiology 151:3679–3688

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Snook LA, Tian C, Kaminskyj SGW, Dahms TES (2006) Fungal surface remodelling visualized by atomic force microscopy. Mycol Res 110:879–886

    Article  PubMed  Google Scholar 

  • Merlini L, Dudin O, Martin SG (2013) Mate and fuse: how yeast cells do it. Open Biol 3:130008

    Article  PubMed Central  PubMed  Google Scholar 

  • Naglik JR, Moyes DL, Wächtler B, Hube B (2011) Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect 13:963–976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Orlean P (2012) Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall. Genetics 192:775–818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paul BC, El-Ganiny AM, Abbas M, Kaminskyj SGW, Dahms TES (2011) Quantifying the importance of galactofuranose in Aspergillus nidulans hyphal wall surface organization by atomic force microscopy. Eukaryot Cell 10:646–653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peleg AY, Hogan DA, Mylonakis E (2010) Medically important bacterial–fungal interactions. Nat Rev Micro 8:340–349

    Article  CAS  Google Scholar 

  • Pillet F, Chopinet L, Formosa C, Dague É (2014a) Atomic force microscopy and pharmacology: from microbiology to cancerology. Biochim Biophys Acta (BBA—Gen Subj) 1840:1028–1050

    Article  CAS  Google Scholar 

  • Pillet F et al (2014b) Uncovering by atomic force microscopy of an original circular structure at the yeast cell surface in response to heat shock. BMC Biol 12:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Plomp M, Leighton TJ, Wheeler KE, Hill HD, Malkin AJ (2007a) In vitro high-resolution structural dynamics of single germinating bacterial spores. PNAS 104:9644–9649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plomp M et al (2007b) Spore coat architecture of Clostridium novyi NT spores. J Bacteriol 189:6457–6468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Potthoff E et al (2012) Rapid and serial quantification of adhesion forces of yeast and mammalian cells. PLoS ONE 7:e52712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ram AFJ et al (1998) Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of b1,3-Glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J Bacteriol 180:1418–1424

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ros R et al (1998) Antigen binding forces of individually addressed single-chain Fv antibody molecules. Proc Natl Acad Sci U S A 95:7402–7405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schiavone M, Sieczkowski N, Castex M, Dague E, Marie François J (2015) Effects of the strain background and autolysis process on the composition and biophysical properties of the cell wall from two different industrial yeasts. FEMS Yeast Res 15(2) pii:fou012. doi:10.1093/femsyr/fou012

    Google Scholar 

  • Stewart MP et al (2013) Wedged AFM-cantilevers for parallel plate cell mechanics. Methods San Diego Calif 60:186–194

    Article  CAS  Google Scholar 

  • Touhami A, Nysten B, Dufrêne YF (2003a) Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19:4539

    Article  CAS  Google Scholar 

  • Touhami A, Nysten B, Dufrêne YF (2003b) Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19:4539–4543

    Article  CAS  Google Scholar 

  • Wildling L et al (2011) Linking of sensor molecules with amino groups to amino-functionalized AFM tips. Bioconjug Chem 22:1239–1248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Younes JA, van der Mei HC, van den Heuvel E, Busscher HJ, Reid G (2012) Adhesion forces and coaggregation between vaginal staphylococci and lactobacilli. PLoS ONE 7:e36917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zykwinska A, Pihet M, Radji S, Bouchara J-P, Cuenot S (2014) Self-assembly of proteins into a three-dimensional multilayer system: investigation of the surface of the human fungal pathogen Aspergillus fumigatus. Biochim Biophys (Acta BBA—Proteins Proteomics). doi:10.1016/j.bbapap.2014.03.001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Dague PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Formosa, C., Dague, E. (2015). Imaging Living Yeast Cells and Quantifying Their Biophysical Properties by Atomic Force Microscopy. In: Dahms, T., Czymmek, K. (eds) Advanced Microscopy in Mycology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-22437-4_7

Download citation

Publish with us

Policies and ethics