Abstract
Super-resolution imaging techniques represent the latest wave of imaging technology and as such are bound to advance future fungal cell microscopy. A conventional light microscope is diffraction limited to a resolution of ~ 250 nm, restricting its capability to allow to accurately measure and distinguish structures in biological samples. Super-resolution techniques, mainly developed over the past decade, circumvent the resolution barrier achieving resolutions that can be well below the conventional limit. Three super-resolution platforms are outlined in this chapter—structured illumination microscopy, stimulated emission depletion microscopy and localization microscopy. Each method differs in terms of maximum achievable resolution, ease of use, phototoxicity and applicability to 3D and live-cell imaging. The value and potential of these techniques to fungal cell biology is demonstrated through review of specific applications, with an emphasis on accurately estimating object size and resolving the finer organization of larger structures.
Keywords
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Bell L, Seshia A, Lando D, Laue E, Palayret M, Lee SF, Klenerman D (2014) A microfluidic device for the hydrodynamic immobilisation of living fission yeast cells for super-resolution imaging. Sens Actuators B Chem 192:36–41
Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645
Chessel A, Boussier J, Dodgson J, Carazo-Salas RE (Unpublished) Investigating single particle cortical polarity nanocluster dynamics without tracking
Coltharp C, Xiao J (2012) Superresolution microscopy for microbiology. Cell Microbiol 14(12):1808–1818
Cox S, Rosten E, Monypenny J, Jovanovic-Talisman T, Burnette DT, Lippincott-Schwartz J et al (2011) Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat Methods 9(2):195-200. doi:10.1038/nmeth.1812
Daboussi L, Costaguta G, Payne GS (2012) Phosphoinositide-mediated clathrin adaptor progression at the trans-Golgi network. Nat Cell Biol 14(3):239–248
Dobbie IM, King E, Parton RM, Carlton PM, Sedat JW, Swedlow JR et al (2011) OMX: a new platform for multimodal, multichannel wide-field imaging. Cold Spring Harb Protoc 2011(8):899–909
Dodgson J, Chessel A, Yamamoto M, Vaggi F, Cox S, Rosten E et al (2013) Spatial segregation of polarity factors into distinct cortical clusters is required for cell polarity control. Nat Commun 4:1834–1839 (Nature Publishing Group. 1AD)
Farahani J, Schibler M, Bentolila L (2010) Stimulated emission depletion (STED) microscopy: from theory to practice. Microscopy: Science, Technology, Applications and Education
Fölling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B et al (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5(11):943–945
Fitzpatrick JAJ, Yan Q, Sieber JJ, Dyba M, Schwarz U, Szent-Gyorgyi C et al (2009) STED nanoscopy in living cells using Fluorogen Activating Proteins. Bioconjug Chem 20(10):1843–1847
Gao L, Shao L, Higgins CD, Poulton JS, Peifer M, Davidson MW et al (2012) Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. Cell 151(6):1370–1385
Gould TJ, Burke D, Bewersdorf J, Booth MJ (2012) Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt Express 20(19):20998–21009
Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(Pt 2):82–87
Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272
Jones SA, Shim S-H, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8(6):499–508
Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97(15):8206–8210
Lando D, Endesfelder U, Berger H, Subramanian L, Dunne PD, McColl J et al (2012) Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast. Open Biol 2(7):120078
Laporte GPJ, Conkey DB, Vasdekis A, Piestun R, Psaltis D (2013) Double-helix enhanced axial localization in STED nanoscopy. Opt Express 21(25):30984
Lubeck E, Cai L (2012) Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat Methods 9(7):743–748
Miao Y, Wong CCL, Mennella V, Michelot A, Agard DA, Holt LJ et al (2013) Cell-cycle regulation of formin-mediated actin cable assembly. Proc Natl Acad Sci U S A 110(47):E4446–E4455
Müller T, Schumann C, Kraegeloh A (2012) STED microscopy and its applications: new insights into cellular processes on the nanoscale. Chemphyschem 13(8):1986–2000
Puchner EM, Walter JM, Kasper R, Huang B, Lim WA (2013) Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory. Proc Natl Acad Sci U S A 110(40):16015–16020
Rankin BR, Moneron G, Wurm CA, Nelson JC, Walter A, Schwarzer D et al (2011 Jun 22) Nanoscopy in a living multicellular organism expressing GFP. Biophys J 100(12):L63–L65
Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795
Saner N, Karschau J, Natsume T, Gierlinski M, Retkute R, Hawkins M, et al (2013) Stochastic association of neighboring replicons creates replication factories in budding yeast. J Cell Biol 202(7):1001–1012
Schaefer LH, Schuster D, Schaffer J (2004) Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach. J Microsc 216(Pt 2):165–174
Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P et al (2008 Jun 6) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881):1332–1336
Spira F, Mueller NS, Beck G, Olshausen von P, Beig J, Wedlich-Soldner R (2012) Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nat Cell Biol 14(6):640–648. doi:10.1038/ncb2487
Spokoini R, Moldavski O, Nahmias Y, England JL, Schuldiner M, Kaganovich D (2012) Confinement to organelle-associated inclusion structures mediates asymmetric inheritance of aggregated protein in budding yeast. Cell Rep 2(4):738–747
Stagge F, Mitronova GY, Belov VN, Wurm CA, Jakobs S (2013) Snap-, CLIP- and Halo-Tag labelling of budding yeast cells. PLoS One 8(10):e78745
Swayne TC, Zhou C, Boldogh IR, Charalel JK, McFaline-Figueroa JR, Thoms S et al (2011) Role for cER and Mmr1p in anchorage of mitochondria at sites of polarized surface growth in budding yeast. Curr Biol 21(23):1994–1999
van de Linde S, Löschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M et al (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6(7):991–1009
Voelkel-Meiman K, Taylor L, Mukherjee P (2013) SUMO localizes to the central element of synaptonemal complex and is required for the full synapsis of meiotic chromosomes in budding yeast. PLoS Genet 9(10):e1003837. doi:10.1371/journal.pgen.1003837
Wildanger D, Medda R, Kastrup L, Hell SW (2009) A compact STED microscope providing 3D nanoscale resolution. J Microsc 236(1):35–43
Wisniewski J, Hajj B, Chen J, Mizuguchi G, Xiao H (2014) Imaging the fate of histone Cse4 reveals de novo replacement in S phase and subsequent stable residence at centromeres. ELife (Europe PMC Article—Europe PubMed Central)
Acknowledgments
We would like to thank Nicola Lawrence and Alex Sossick for assistance with imaging and Eric Betzig for use of the super-resolution imaging-limitation triangle. This work was supported by an European Research Council (ERC) Starting Researcher Investigator Grant (R.E.C.-S., J.D.; SYSGRO), a Human Frontier Science Program (HFSP) Young Investigator Grant (R.E.C.-S., A.C., J.D.; HFSP RGY0066/2009-C), Biotechnology and Biological Sciences Research Council (BBSRC) Responsive Mode grant (R.E.C.-S., A.C., J.D.; BB/K006320/1) and an MRC grant (S.C.). S.C. was also supported by a Royal Society University Research Fellowship.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Dodgson, J., Chessel, A., Cox, S., Carazo Salas, R. (2015). Super-Resolution Microscopy: SIM, STED and Localization Microscopy. In: Dahms, T., Czymmek, K. (eds) Advanced Microscopy in Mycology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-22437-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-22437-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22436-7
Online ISBN: 978-3-319-22437-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)
