Skip to main content

Super-Resolution Microscopy: SIM, STED and Localization Microscopy

Part of the Fungal Biology book series (FUNGBIO)

Abstract

Super-resolution imaging techniques represent the latest wave of imaging technology and as such are bound to advance future fungal cell microscopy. A conventional light microscope is diffraction limited to a resolution of ~ 250 nm, restricting its capability to allow to accurately measure and distinguish structures in biological samples. Super-resolution techniques, mainly developed over the past decade, circumvent the resolution barrier achieving resolutions that can be well below the conventional limit. Three super-resolution platforms are outlined in this chapter—structured illumination microscopy, stimulated emission depletion microscopy and localization microscopy. Each method differs in terms of maximum achievable resolution, ease of use, phototoxicity and applicability to 3D and live-cell imaging. The value and potential of these techniques to fungal cell biology is demonstrated through review of specific applications, with an emphasis on accurately estimating object size and resolving the finer organization of larger structures.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR   105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bell L, Seshia A, Lando D, Laue E, Palayret M, Lee SF, Klenerman D (2014) A microfluidic device for the hydrodynamic immobilisation of living fission yeast cells for super-resolution imaging. Sens Actuators B Chem 192:36–41

    Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    CrossRef  CAS  PubMed  Google Scholar 

  • Chessel A, Boussier J, Dodgson J, Carazo-Salas RE (Unpublished) Investigating single particle cortical polarity nanocluster dynamics without tracking

    Google Scholar 

  • Coltharp C, Xiao J (2012) Superresolution microscopy for microbiology. Cell Microbiol 14(12):1808–1818

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Cox S, Rosten E, Monypenny J, Jovanovic-Talisman T, Burnette DT, Lippincott-Schwartz J et al (2011) Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat Methods 9(2):195-200. doi:10.1038/nmeth.1812

    Google Scholar 

  • Daboussi L, Costaguta G, Payne GS (2012) Phosphoinositide-mediated clathrin adaptor progression at the trans-Golgi network. Nat Cell Biol 14(3):239–248

    CrossRef  CAS  PubMed  Google Scholar 

  • Dobbie IM, King E, Parton RM, Carlton PM, Sedat JW, Swedlow JR et al (2011) OMX: a new platform for multimodal, multichannel wide-field imaging. Cold Spring Harb Protoc 2011(8):899–909

    CrossRef  PubMed  Google Scholar 

  • Dodgson J, Chessel A, Yamamoto M, Vaggi F, Cox S, Rosten E et al (2013) Spatial segregation of polarity factors into distinct cortical clusters is required for cell polarity control. Nat Commun 4:1834–1839 (Nature Publishing Group. 1AD)

    CrossRef  PubMed Central  PubMed  Google Scholar 

  • Farahani J, Schibler M, Bentolila L (2010) Stimulated emission depletion (STED) microscopy: from theory to practice. Microscopy: Science, Technology, Applications and Education

    Google Scholar 

  • Fölling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B et al (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5(11):943–945

    Google Scholar 

  • Fitzpatrick JAJ, Yan Q, Sieber JJ, Dyba M, Schwarz U, Szent-Gyorgyi C et al (2009) STED nanoscopy in living cells using Fluorogen Activating Proteins. Bioconjug Chem 20(10):1843–1847

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao L, Shao L, Higgins CD, Poulton JS, Peifer M, Davidson MW et al (2012) Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. Cell 151(6):1370–1385

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Gould TJ, Burke D, Bewersdorf J, Booth MJ (2012) Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt Express 20(19):20998–21009

    CrossRef  PubMed Central  PubMed  Google Scholar 

  • Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(Pt 2):82–87

    CrossRef  CAS  PubMed  Google Scholar 

  • Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones SA, Shim S-H, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8(6):499–508

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97(15):8206–8210

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Lando D, Endesfelder U, Berger H, Subramanian L, Dunne PD, McColl J et al (2012) Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast. Open Biol 2(7):120078

    CrossRef  PubMed Central  PubMed  Google Scholar 

  • Laporte GPJ, Conkey DB, Vasdekis A, Piestun R, Psaltis D (2013) Double-helix enhanced axial localization in STED nanoscopy. Opt Express 21(25):30984

    CrossRef  CAS  PubMed  Google Scholar 

  • Lubeck E, Cai L (2012) Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat Methods 9(7):743–748

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Miao Y, Wong CCL, Mennella V, Michelot A, Agard DA, Holt LJ et al (2013) Cell-cycle regulation of formin-mediated actin cable assembly. Proc Natl Acad Sci U S A 110(47):E4446–E4455

    CrossRef  Google Scholar 

  • Müller T, Schumann C, Kraegeloh A (2012) STED microscopy and its applications: new insights into cellular processes on the nanoscale. Chemphyschem 13(8):1986–2000

    CrossRef  PubMed  Google Scholar 

  • Puchner EM, Walter JM, Kasper R, Huang B, Lim WA (2013) Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory. Proc Natl Acad Sci U S A 110(40):16015–16020

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Rankin BR, Moneron G, Wurm CA, Nelson JC, Walter A, Schwarzer D et al (2011 Jun 22) Nanoscopy in a living multicellular organism expressing GFP. Biophys J 100(12):L63–L65

    CrossRef  Google Scholar 

  • Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Saner N, Karschau J, Natsume T, Gierlinski M, Retkute R, Hawkins M, et al (2013) Stochastic association of neighboring replicons creates replication factories in budding yeast. J Cell Biol 202(7):1001–1012

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Schaefer LH, Schuster D, Schaffer J (2004) Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach. J Microsc 216(Pt 2):165–174

    CrossRef  CAS  PubMed  Google Scholar 

  • Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P et al (2008 Jun 6) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881):1332–1336

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Spira F, Mueller NS, Beck G, Olshausen von P, Beig J, Wedlich-Soldner R (2012) Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nat Cell Biol 14(6):640–648. doi:10.1038/ncb2487

    Google Scholar 

  • Spokoini R, Moldavski O, Nahmias Y, England JL, Schuldiner M, Kaganovich D (2012) Confinement to organelle-associated inclusion structures mediates asymmetric inheritance of aggregated protein in budding yeast. Cell Rep 2(4):738–747

    CrossRef  CAS  PubMed  Google Scholar 

  • Stagge F, Mitronova GY, Belov VN, Wurm CA, Jakobs S (2013) Snap-, CLIP- and Halo-Tag labelling of budding yeast cells. PLoS One 8(10):e78745

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Swayne TC, Zhou C, Boldogh IR, Charalel JK, McFaline-Figueroa JR, Thoms S et al (2011) Role for cER and Mmr1p in anchorage of mitochondria at sites of polarized surface growth in budding yeast. Curr Biol 21(23):1994–1999

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • van de Linde S, Löschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M et al (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6(7):991–1009

    CrossRef  PubMed  Google Scholar 

  • Voelkel-Meiman K, Taylor L, Mukherjee P (2013) SUMO localizes to the central element of synaptonemal complex and is required for the full synapsis of meiotic chromosomes in budding yeast. PLoS Genet 9(10):e1003837. doi:10.1371/journal.pgen.1003837

    Google Scholar 

  • Wildanger D, Medda R, Kastrup L, Hell SW (2009) A compact STED microscope providing 3D nanoscale resolution. J Microsc 236(1):35–43

    CrossRef  CAS  PubMed  Google Scholar 

  • Wisniewski J, Hajj B, Chen J, Mizuguchi G, Xiao H (2014) Imaging the fate of histone Cse4 reveals de novo replacement in S phase and subsequent stable residence at centromeres. ELife (Europe PMC Article—Europe PubMed Central)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Nicola Lawrence and Alex Sossick for assistance with imaging and Eric Betzig for use of the super-resolution imaging-limitation triangle. This work was supported by an European Research Council (ERC) Starting Researcher Investigator Grant (R.E.C.-S., J.D.; SYSGRO), a Human Frontier Science Program (HFSP) Young Investigator Grant (R.E.C.-S., A.C., J.D.; HFSP RGY0066/2009-C), Biotechnology and Biological Sciences Research Council (BBSRC) Responsive Mode grant (R.E.C.-S., A.C., J.D.; BB/K006320/1) and an MRC grant (S.C.). S.C. was also supported by a Royal Society University Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Dodgson PhD, BSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dodgson, J., Chessel, A., Cox, S., Carazo Salas, R. (2015). Super-Resolution Microscopy: SIM, STED and Localization Microscopy. In: Dahms, T., Czymmek, K. (eds) Advanced Microscopy in Mycology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-22437-4_3

Download citation

Publish with us

Policies and ethics