Skip to main content

Fluorescence-Based Methods for the Study of Protein Localization, Interaction, and Dynamics in Filamentous Fungi

  • Chapter
  • First Online:
Advanced Microscopy in Mycology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Filamentous fungi comprise a large group of agriculturally, industrially, and clinically important eukaryotic organisms. They are used as factories in the production of useful enzymes, secondary metabolites, pigments, vitamins, and antibiotics. Other species are pathogens and can, therefore, cause dire diseases in humans, animals, and plants. Both their useful and detrimental manifestations are the consequence of characteristic growth and developmental patterns as well as their ability to rapidly and efficiently adapt to changing environments. The implementation of fluorescence microscopy to study the subcellular localization of filamentous fungal proteins and organelles in the beginning of the 1990s made an important contribution to our knowledge of mechanisms that control growth, reproduction, stress response, cell cycle, secretory pathways, and cargo transport. Standard procedures are currently available for labeling fungal factors with fluorescent proteins. Furthermore, a new battery of advanced fluorescence microscopy techniques is being adapted for a deeper and more accurate study of protein localization, interaction, and dynamics in many filamentous fungal species. This chapter provides an overview of these novel fluorescence microscopy methods for filamentous fungi, focusing mainly on the model ascomycete Aspergillus nidulans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abenza JF, Pantazopoulou A, Rodriguez JM, Galindo A, Penalva MA (2009) Long-distance movement of Aspergillus nidulans early endosomes on microtubule tracks. Traffic 10(1):57–75. (Available from PM: 19000168)

    Article  CAS  PubMed  Google Scholar 

  • Adams TH, Wieser JK, Yu J-H (1998) Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 62(1):35–54. http://mmbr.asm.org/cgi/content/abstract/62/1/35 (Available from PM: 9529886)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Allen GJ, Kwak JM, Chu SP, Llopis J, Tsien RY, Harper JF, Schroeder JI (1999) Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J 19(6):735–747. (Available from PM: 10571859)

    Article  CAS  PubMed  Google Scholar 

  • Altenbach K, Duncan RR, Valkonen M (2009) In vivo FLIM-FRET measurements of recombinant proteins expressed in filamentous fungi. Fungal Biol Rev 23(3):67–71. http://www.sciencedirect.com/science/article/pii/S1749461310000023 doi:10.1016/j.fbr.2009.12.002

    Article  Google Scholar 

  • Baker SM, Buckheit RW III, Falk MM (2010) Green-to-red photoconvertible fluorescent proteins: tracking cell and protein dynamics on standard wide-field mercury arc-based microscopes. BMC Cell Biol 11:15. (Available from PM: 20175925)

    Article  PubMed Central  PubMed  Google Scholar 

  • Bayram O, Braus GH, Fischer R, Rodriguez-Romero J (2010) Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet Biol 47(11):900–908. (Available from PM: 20573560)

    Article  CAS  PubMed  Google Scholar 

  • Brand A (2012) Hyphal growth in human fungal pathogens and its role in virulence. Int J Microbiol 2012:517529. (Available from PM: 22121367)

    Article  PubMed Central  PubMed  Google Scholar 

  • Chang CW, Sud D, Mycek MA (2007) Fluorescence lifetime imaging microscopy. Methods Cell Biol 81:495–524. (Available from PM: 17519182)

    Article  CAS  PubMed  Google Scholar 

  • Chudakov DM, Lukyanov S, Lukyanov KA (2007a) Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat Protoc 2(8):2024–2032. (Available from PM: 17703215)

    Article  CAS  PubMed  Google Scholar 

  • Chudakov DM, Lukyanov S, Lukyanov KA (2007b) Using photoactivatable fluorescent protein Dendra2 to track protein movement. Biotechniques 42(5)553, 555, 557. (Available from PM: 17515192)

    Article  Google Scholar 

  • Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38(10):2887–2921. (Available from PM: 19771335)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Souza CP, Osmani SA (2007) Mitosis, not just open or closed. Eukaryot Cell 6(9):1521–1527. (Available from PM: 17660363)

    Article  PubMed Central  PubMed  Google Scholar 

  • Espeso EA, Osmani SA (2008) Nuclear pore complex and transport in Aspergillus nidulans. In: Goldman GH, Osmani SA (eds) The Aspergilli: genomics, medical aspects, biotechnology, and research methods. Taylor & Francis Group, Boca Raton, pp 261–277

    Google Scholar 

  • Etxebeste O, Ni M, Garzia A, Kwon NJ, Fischer R, Yu JH, Espeso EA, Ugalde U (2008) Basic-zipper-type transcription factor FlbB controls asexual development in Aspergillus nidulans. Eukaryot Cell 7(1):38–48. (Available from PM: 17993569)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Etxebeste O, Herrero-Garcia E, Araujo-Bazan L, Rodriguez-Urra AB, Garzia A, Ugalde U, Espeso EA (2009) The bZIP-type transcription factor FlbB regulates distinct morphogenetic stages of colony formation in Aspergillus nidulans. Mol Microbiol 73(5):775–789. (Available from PM: 19656299)

    Article  CAS  PubMed  Google Scholar 

  • Etxebeste O, Ugalde U, Espeso EA (2010) Adaptative and developmental responses to stress in Aspergillus nidulans. Curr Protein Pept Sci 11(8):704–718. (Available from PM: 21235506)

    Article  CAS  PubMed  Google Scholar 

  • Etxebeste O, Villarino M, Markina-Inarrairaegui A, Araujo-Bazan L, Espeso EA (2013) Cytoplasmic dynamics of the general nuclear import machinery in apically growing syncytial cells. PLoS ONE 8(12):e85076. (Available from PM: 24376868)

    Article  PubMed Central  PubMed  Google Scholar 

  • Fischer R, Timberlake WE (1995) Aspergillus nidulans apsA (anucleate primary sterigmata) encodes a coiled-coil protein required for nuclear positioning and completion of asexual development. J Cell Biol 128(4):485–498. (Available from PM: 7860626)

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Zekert N, Takeshita N (2008) Polarized growth in fungi—interplay between the cytoskeleton, positional markers and membrane domains. Mol Microbiol 68(4):813–826. (Available from PM: 18399939)

    Article  CAS  PubMed  Google Scholar 

  • Fiserova J, Goldberg MW (2010) Nucleocytoplasmic transport in yeast: a few roles for many actors. Biochem Soc Trans 38(Pt 1):273–277. (Available from PM: 20074073)

    Article  CAS  PubMed  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186–194. (Available from PM: 22498624)

    Article  CAS  PubMed  Google Scholar 

  • Garzia A, Etxebeste O, Herrero-Garcia E, Fischer R, Espeso EA, Ugalde U (2009) Aspergillus nidulans FlbE is an upstream developmental activator of conidiation functionally associated with the putative transcription factor FlbB. Mol Microbiol 71(1):172–184. (Available from PM: 19007409)

    Article  CAS  PubMed  Google Scholar 

  • Garzia A, Etxebeste O, Herrero-Garcia E, Ugalde U, Espeso EA (2010) The concerted action of bZip and cMyb transcription factors FlbB and FlbD induces brlA expression and asexual development in Aspergillus nidulans. Mol Microbiol 75(5):1314–1324. (Available from PM: 20132447)

    Article  CAS  PubMed  Google Scholar 

  • Gibbs PA, Seviour RJ, Schmid F (2000) Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit Rev Biotechnol 20(1):17–48. (Available from PM: 10770226)

    Article  CAS  PubMed  Google Scholar 

  • Giraldo MC, Dagdas YF, Gupta YK, Mentlak TA, Yi M, Martinez-Rocha AL, Saitoh H, Terauchi R, Talbot NJ, Valent B (2013) Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat Commun 4:1996. (Available from PM: 23774898)

    Article  PubMed Central  PubMed  Google Scholar 

  • Gregory PH (1966) The fungus spore: what it is and what it does. In: Madelin MF (ed) The fungus spore. Butterworths, London, pp 1–13

    Google Scholar 

  • Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24(4):461–465. (Available from PM: 16550175)

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Correa M, Ludena Y, Ramage G, Villena GK (2012) Recent advances on filamentous fungal biofilms for industrial uses. Appl Biochem Biotechnol 167(5):1235–1253. (Available from PM: 22350934)

    Article  CAS  PubMed  Google Scholar 

  • Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363(6428):446–448. (Available from PM: 8502296)

    Article  CAS  PubMed  Google Scholar 

  • Harris SD (2006) Cell polarity in filamentous fungi: shaping the mold. Int Rev Cytol 251:41–77. (Available from PM: 16939777)

    Article  CAS  PubMed  Google Scholar 

  • Harris SD (2009) The Spitzenkorper: a signalling hub for the control of fungal development? Mol Microbiol 73(5):733–736. (Available from PM: 19627503)

    Article  CAS  PubMed  Google Scholar 

  • Harris SD, Morrell JL, Hamer JE (1994) Identification and characterization of Aspergillus nidulans mutants defective in cytokinesis. Genetics 136(2):517–532. (Available from PM: 8150280)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hayakawa Y, Ishikawa E, Shoji JY, Nakano H, Kitamoto K (2011) Septum-directed secretion in the filamentous fungus Aspergillus oryzae. Mol Microbiol 81(1):40–55. (Available from PM: 21564341)

    Article  CAS  PubMed  Google Scholar 

  • Herrero-Garcia E, Perez-de-Nanclares-Arregi E, Cortese MS, Markina-Iñarrairaegui A, Oiartzabal-Arano E, Etxebeste O, Ugalde U, Espeso EA (2015) Tip-to-nucleus migration dynamics of the asexual development regulator FlbB in vegetative cells. Mol Microbiol. doi: 10.1111/mmi.13156.

    Google Scholar 

  • Higashitsuji Y, Herrero S, Takeshita N, Fischer R (2009) The cell end marker protein TeaC is involved in growth directionality and septation in Aspergillus nidulans. Eukaryot Cell 8(7):957–967. (Available from PM: 19429780)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horio T, Oakley BR (2005) The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell 16(2):918–926. (Available from PM: 15548594)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ibraheem A, Campbell RE (2010) Designs and applications of fluorescent protein-based biosensors. Curr Opin Chem Biol 14(1):30–36. (Available from PM: 19913453)

    Article  CAS  PubMed  Google Scholar 

  • Ishitsuka Y, Savage N, Li Y, Bergs A, Gruen N, Kohler D, Donnelly R, Nienhaus GU, Fischer R, Takeshita N. (2015) Super-resolution microscopy reveals a dynamic picture of cell polarity maintenance during directional growth. Sci Adv, In press

    Google Scholar 

  • Jasik J, Boggetti B, Baluska F, Volkmann D, Gensch T, Rutten T, Altmann T, Schmelzer E (2013) PIN2 turnover in Arabidopsis root epidermal cells explored by the photoconvertible protein Dendra2. PLoS ONE 8(4):e61403. (Available from PM: 23637828)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang D, Zhu W, Wang Y, Sun C, Zhang KQ, Yang J (2013) Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol Adv 31(8):1562–1574. (Available from PM: 23988676)

    Article  CAS  PubMed  Google Scholar 

  • Kerppola TK (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc 1(3):1278–1286. (Available from PM: 17406412)

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim HS, Czymmek KJ, Patel A, Modla S, Nohe A, Duncan R, Gilroy S, Kang S (2012) Expression of the cameleon calcium biosensor in fungi reveals distinct Ca2+ signatures associated with polarized growth, development, and pathogenesis. Fungal Genet Biol 49(8):589–601. (Available from PM: 22683653)

    Article  CAS  PubMed  Google Scholar 

  • Klonis N, Rug M, Harper I, Wickham M, Cowman A, Tilley L (2002) Fluorescence photobleaching analysis for the study of cellular dynamics. Eur Biophys J 31(1):36–51. (Available from PM: 12046896)

    Article  CAS  PubMed  Google Scholar 

  • Kodama Y, Hu CD (2012) Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. Biotechniques 53(5):285–298. (Available from PM: 23148879)

    Article  CAS  PubMed  Google Scholar 

  • Kües U, Fischer R (2006) Asexual sporulation in mycelial fungi. In: Kües U, Fischer R (eds) The Mycota vol. I: growth, differentiation and sexuality. Springer-Verlag, Berlin, pp 263–292

    Chapter  Google Scholar 

  • Kürnsteiner H, Zinner M, Kück U (2002) Immunosuppressants. In: Esser K, Bennett JW (eds) The Mycota X: industrial application. Springer-Verlag, Berlin, pp 129–155

    Chapter  Google Scholar 

  • Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol 5:S7–S14. (Available from PM: 14562845)

    Article  Google Scholar 

  • Markina-Inarrairaegui A, Etxebeste O, Herrero-Garcia E, Araujo-Bazan L, Fernandez-Martinez J, Flores JA, Osmani SA, Espeso EA (2011) Nuclear transporters in a multinucleated organism: functional and localization analyses in Aspergillus nidulans. Mol Biol Cell 22(20):3874–3886. (Available from PM: 21880896)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6(2):131–133. (Available from PM: 19169260)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Momany M (2002) Polarity in filamentous fungi: establishment, maintenance and new axes. Curr Opin Microbiol 5(6):580–585. (Available from PM: 12457701)

    Article  CAS  PubMed  Google Scholar 

  • Momany M, Hamer JE (1997) Relationship of actin, microtubules, and crosswall synthesis during septation in Aspergillus nidulans. Cell Motil Cytoskeleton 38(4):373–384. (Available from PM: 9415379)

    Article  CAS  PubMed  Google Scholar 

  • Mourino-Perez RR, Roberson RW, Bartnicki-Garcia S (2006) Microtubule dynamics and organization during hyphal growth and branching in Neurospora crassa. Fungal Genet Biol 43(6):389–400. (Available from PM: 16621627)

    Article  CAS  PubMed  Google Scholar 

  • Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 101(29):10554–10559. (Available from PM: 15247428)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Onischenko E, Stanton LH, Madrid AS, Kieselbach T, Weis K (2009) Role of the Ndc1 interaction network in yeast nuclear pore complex assembly and maintenance. J Cell Biol 185(3):475–491. (Available from PM: 19414609)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Osmani AH, Davies J, Liu HL, Nile A, Osmani SA (2006) Systematic deletion and mitotic localization of the nuclear pore complex proteins of Aspergillus nidulans. Mol Biol Cell 17(12):4946–4961. (Available from PM: 16987955)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pantazopoulou A, Penalva MA (2009) Organization and dynamics of the Aspergillus nidulans golgi during apical extension and mitosis. Mol Biol Cell 20(20):4335–4347. (Available from PM: 19692566)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Penalva MA, Galindo A, Abenza JF, Pinar M, Calcagno-Pizarelli AM, Arst HN, Pantazopoulou A (2012) Searching for gold beyond mitosis: mining intracellular membrane traffic in Aspergillus nidulans. Cell Logist 2(1):2–14. (Available from PM: 22645705)

    Article  PubMed Central  PubMed  Google Scholar 

  • Perez-de-Nanclares-Arregi E, Etxebeste O (2014) Photo-convertible tagging for localization and dynamic analyses of low-expression proteins in filamentous fungi. Fungal Genet Biol 70:33–41. (Available from PM: 25014896)

    Article  CAS  PubMed  Google Scholar 

  • Pontecorvo G, Roper JA, Hemmons LM, McDonald KD, Bufton AW (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238

    Article  CAS  PubMed  Google Scholar 

  • Purschwitz J, Muller S, Kastner C, Schoser M, Haas H, Espeso EA, Atoui A, Calvo AM, Fischer R (2008) Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr Biol 18(4):255–259. (Available from PM: 18291652)

    Article  CAS  PubMed  Google Scholar 

  • Raffaele S, Kamoun S (2012) Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 10(6):417–430. http://dx.doi.org/10.1038/nrmicro2790 (Available from PM: 22565130)

    CAS  PubMed  Google Scholar 

  • Ramos-Garcia SL, Roberson RW, Freitag M, Bartnicki-Garcia S, Mourino-Perez RR (2009) Cytoplasmic bulk flow propels nuclei in mature hyphae of Neurospora crassa. Eukaryot Cell 8(12):1880–1890. (Available from PM: 19684281)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Read ND (2011) Exocytosis and growth do not occur only at hyphal tips. Mol Microbiol 81(1):4–7. (Available from PM: 21645129)

    Article  CAS  PubMed  Google Scholar 

  • Ries J, Kaplan C, Platonova E, Eghlidi H, Ewers H (2012) A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9(6):582–584. (Available from PM: 22543348)

    Article  CAS  PubMed  Google Scholar 

  • Riquelme M (2013) Tip growth in filamentous fungi: a road trip to the apex. Annu Rev Microbiol 67:587–609. (Available from PM: 23808332)

    Article  CAS  PubMed  Google Scholar 

  • Riquelme M, Fischer R, Bartnicki-Garcia S (2003) Apical growth and mitosis are independent processes in Aspergillus nidulans. Protoplasma 222(3–4):211–215. (Available from PM: 14714210)

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Romero J, Hedtke M, Kastner C, Muller S, Fischer R (2010) Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol 64:585–610. (Available from PM: 20533875)

    Article  CAS  PubMed  Google Scholar 

  • Rogers KL, Picaud S, Roncali E, Boisgard R, Colasante C, Stinnakre J, Tavitian B, Brulet P (2007) Non-invasive in vivo imaging of calcium signaling in mice. PLoS ONE 2(10):e974. (Available from PM: 17912353)

    Article  PubMed Central  PubMed  Google Scholar 

  • Sampson K, Heath IB (2005) The dynamic behaviour of microtubules and their contributions to hyphal tip growth in Aspergillus nidulans. Microbiology 151(Pt 5):1543–1555. (Available from PM: 15870464)

    Article  CAS  PubMed  Google Scholar 

  • Schuster M, Kilaru S, Fink G, Collemare J, Roger Y, Steinberg G (2011) Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array. Mol Biol Cell 22(19):3645–3657. (Available from PM: 21832152)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schuster M, Treitschke S, Kilaru S, Molloy J, Harmer NJ, Steinberg G (2012) Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase. EMBO J 31(1):214–227. (Available from PM: 22027862)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sekar RB, Periasamy A (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160(5):629–633. (Available from PM: 12615908)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soanes DM, Alam I, Cornell M, Wong HM, Hedeler C, Paton NW, Rattray M, Hubbard SJ, Oliver SG, Talbot NJ (2008) Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS ONE 3(6):e2300. (Available from PM: 18523684)

    Article  PubMed Central  PubMed  Google Scholar 

  • Steinberg G (2012) The transport machinery for motility of fungal endosomes. Fungal Genet Biol 49(9):675–676. (Available from PM: 22330672)

    Article  PubMed  Google Scholar 

  • Steinberg G, Schuster M, Theisen U, Kilaru S, Forge A, Martin-Urdiroz M (2012) Motor-driven motility of fungal nuclear pores organizes chromosomes and fosters nucleocytoplasmic transport. J Cell Biol 198(3):343–355. (Available from PM: 22851316)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taheri-Talesh N, Xiong Y, Oakley BR (2012) The functions of myosin II and myosin V homologs in tip growth and septation in Aspergillus nidulans. PLoS ONE 7(2):e31218. (Available from PM: 22359575)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takeshita N, Higashitsuji Y, Konzack S, Fischer R (2008) Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 19(1):339–351. (Available from PM: 18003978)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takeshita N, Mania D, Herrero S, Ishitsuka Y, Nienhaus GU, Podolski M, Howard J, Fischer R (2013) The cell-end marker TeaA and the microtubule polymerase AlpA contribute to microtubule guidance at the hyphal tip cortex of Aspergillus nidulans to provide polarity maintenance. J Cell Sci 126(Pt 23):5400–5411. (Available from PM: 24101725)

    Article  CAS  PubMed  Google Scholar 

  • Takeshita N, Manck R, Grun N, de Vega SH, Fischer R (2014) Interdependence of the actin and the microtubule cytoskeleton during fungal growth. Curr Opin Microbiol 20:34–41. (Available from PM: 24879477)

    Article  CAS  PubMed  Google Scholar 

  • Todd RB, Davis MA, Hynes MJ (2007) Genetic manipulation of Aspergillus nidulans: meiotic progeny for genetic analysis and strain construction. Nat Protoc 2(4):811–821. http://dx.doi.org/10.1038/nprot.2007.112 (Available from PM: 17446881)

    Article  CAS  PubMed  Google Scholar 

  • Toews MW, Warmbold J, Konzack S, Rischitor P, Veith D, Vienken K, Vinuesa C, Wei H, Fischer R (2004) Establishment of mRFP1 as a fluorescent marker in Aspergillus nidulans and construction of expression vectors for high-throughput protein tagging using recombination in vitro (GATEWAY). Curr Genet 45(6):383–389. (Available from PM: 15071756)

    Article  CAS  PubMed  Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544. (Available from PM: 9759496)

    Article  CAS  PubMed  Google Scholar 

  • Valkonen M, Kalkman ER, Saloheimo M, Penttila M, Read ND, Duncan RR (2007) Spatially segregated SNARE protein interactions in living fungal cells. J Biol Chem 282(31):22775–22785. (Available from PM: 17553800)

    Article  CAS  PubMed  Google Scholar 

  • Vorvis C, Markus SM, Lee WL (2008) Photoactivatable GFP tagging cassettes for protein-tracking studies in the budding yeast Saccharomyces cerevisiae. Yeast 25(9):651–659. (Available from PM: 18727145)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Rocker C, Salih A, Spindler KD, Nienhaus GU (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci U S A 101(45):15905–15910. (Available from PM: 15505211)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wiedenmann J, Gayda S, Adam V, Oswald F, Nienhaus K, Bourgeois D, Nienhaus GU (2011) From EosFP to mIrisFP: structure-based development of advanced photoactivatable marker proteins of the GFP-family. J Biophotonics 4(6):377–390. (Available from PM: 21319305)

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Ukil L, Osmani A, Nahm F, Davies J, De Souza CP, Dou X, Perez-Balaguer A, Osmani SA (2004) Rapid production of gene replacement constructs and generation of a green fluorescent protein-tagged centromeric marker in Aspergillus nidulans. Eukaryot Cell 3(5):1359–1362. (Available from PM: 15470263)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Dominguez Y, Scazzocchio C (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41(11):973–981. (Available from PM: 15465386)

    Article  CAS  PubMed  Google Scholar 

  • Zekert N, Fischer R (2009) The Aspergillus nidulans kinesin-3 UncA motor moves vesicles along a subpopulation of microtubules. Mol Biol Cell 20(2):673–684. (Available from PM: 19037104)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work at N. Takeshita’s laboratory was funded by the DFG (TA819/2) and the Baden-Württemberg Stiftung. Work by O. Etxebeste was funded by the Basque Government through grant IT599-13 and the Ministerio de Economía y Competitividad (formerly Ministerio de Ciencia e Innovación) through grant BFU2010-17528. We would like to express our gratitude to Dr. Marc S. Cortese for proofreading the document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Takeshita PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Etxebeste, O., Takeshita, N. (2015). Fluorescence-Based Methods for the Study of Protein Localization, Interaction, and Dynamics in Filamentous Fungi. In: Dahms, T., Czymmek, K. (eds) Advanced Microscopy in Mycology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-22437-4_2

Download citation

Publish with us

Policies and ethics