Skip to main content

Maternal Nutrition and Preterm Delivery

  • Chapter

Part of the book series: Nutrition and Health ((NH))

Abstract

The USA has one of the highest rates of preterm birth (<37 weeks gestation) in the developed world. The zenith was reached in 2006 with a rate of 12.6 %, an increase of more that 15–30 % compared to prior years (9.7 % in 1990, 11.0 % in 2005). The rate has decreased since then and by the year 2012 amounted to 11.55 % (National Vital Statistics Reports 62:1–87, 2013).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Martin JA, Hamilton BE, Osterman MJK, Curtin SC, Mathews MA, Mathews TJ. Division of Vital Statistics (2013) births: final data for 2012. Natl Vital Stat Rep. 2013;62:1–87.

    Google Scholar 

  2. Heron M. Deaths: leading causes for 2009. Natl Vital Stat Rep. 2012;61:1–96.

    PubMed  Google Scholar 

  3. Institute of Medicine (US) Committee on Understanding Premature Birth and Assuring Healthy Outcomes; Behrman RE, Butler AS, editors. Preterm birth: causes, consequences, and prevention. Washington, DC: National Academies Press (US); 2007. http://www.ncbi.nlm.nih.gov/books/NBK11362/.

  4. Moster D, Lie RT, Markestad T. Long-term medical and social consequences of preterm birth. N Engl J Med. 2008;359:262–73.

    Article  PubMed  CAS  Google Scholar 

  5. D’Onofrio BM, Class QA, Rickert ME, Larsson H, Langstrom N, Lichtenstein P. Preterm birth and mortality and morbidity: a population-based quasi-experimental study. JAMA Psychol. 2013;70:1231–40.

    Article  Google Scholar 

  6. Lewandowski AJ, Augustine D, Lamata P, et al. Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation. 2013;127:197–206.

    Article  PubMed  Google Scholar 

  7. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993;341:938–41.

    Article  PubMed  CAS  Google Scholar 

  8. Spong CY. Prediction and prevention of recurrent spontaneous preterm birth. Obstet Gynecol. 2007;110:405–15.

    Article  PubMed  Google Scholar 

  9. Iams JD, Romero R, Culhane JF, Goldenberg RL. Primary, secondary, and tertiary interventions to reduce the morbidity and mortality of preterm birth. Lancet. 2008;371:164–75.

    Article  PubMed  Google Scholar 

  10. Society for Maternal-Fetal Medicine Publications Committee waoVB. Progesterone and preterm birth prevention: translating clinical trials data into clinical practice. Am J Obstet Gynecol. 2012;206:376–86.

    Article  CAS  Google Scholar 

  11. Wisanskoonwong P, Fahy K, Hastie C. The effectiveness of medical interventions aimed at preventing preterm birth: a literature review. Women Birth. 2011;24:141–7.

    Article  PubMed  Google Scholar 

  12. Ananth CV, Vintzileos AM. Epidemiology of preterm birth and its clinical subtypes. J Matern Fetal Neonatal Med. 2006;19:773–82. See comment in PubMed Commons below.

    Article  PubMed  Google Scholar 

  13. Dunsworth HM, Warrener AG, Deacon T, Ellison PT, Pontzer H. Metabolic hypothesis for human altriciality. Proc Natl Acad Sci U S A. 2012;109:15212–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Institute of Medicine and National Research Council. Weight Gain during Pregnancy: Reexamining the Guidelines. Washington, DC: The National Academies Press; 2009.

    Google Scholar 

  15. Viswanathan M, Siega-Riz AM, Moos MK, et al. Outcomes of maternal weight gain. Evid Rep Technol Assess. 2008;168:1–223.

    Google Scholar 

  16. Park S, Sappenfield WM, Bish C, Salihu H, Goodman D, Bensyl DM. Assessment of the Institute of Medicine recommendations for weight gain during pregnancy: Florida, 2004–2007. Maternal Child Health J. 2011;15:289–301.

    Article  Google Scholar 

  17. Phelan S, Phipps MG, Abrams B, Darroch F, Schaffner A, Wing RR. Randomized trial of a behavioral intervention to prevent excessive gestational weight gain: the fit for delivery study. Am J Clin Nutr. 2011;93:772–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Nohr EA, Bech BH, Vaeth M, Rasmussen KM, Henriksen TB, Olsen J. Obesity, gestational weight gain and preterm birth: a study within the Danish National Birth Cohort. Paediatr Perinat Epidemiol. 2007;21:5–14.

    Article  PubMed  Google Scholar 

  19. Cnattingius S, Villamor E, Johansson S, et al. Maternal obesity and risk of preterm delivery. JAMA. 2013;309:2362–70.

    Article  PubMed  CAS  Google Scholar 

  20. Dietz PM, Callaghan WM, Cogswell ME, Morrow B, Ferre C, Schieve LA. Combined effects of prepregnancy body mass index and weight gain during pregnancy on the risk of preterm delivery. Epidemiology. 2006;17:170–7.

    Article  PubMed  Google Scholar 

  21. Hediger ML, Scholl TO, Belsky DH, Ances IG, Salmon RW. Patterns of weight gain in adolescent pregnancy: effects on birth weight and preterm delivery. Obstet Gynecol. 1989;74:6–12.

    PubMed  CAS  Google Scholar 

  22. Hediger ML, Scholl TO, Salmon RW. Early weight gain in pregnant adolescents and fetal outcome. Am J Hum Biol. 1989;1:665–72.

    Article  Google Scholar 

  23. Abrams B, Newman V, Key T, Parker J. Maternal weight gain and preterm delivery. Obstet Gynecol. 1989;74:577–83.

    PubMed  CAS  Google Scholar 

  24. Carmichael SL, Abrams B. A critical review of the relationship between gestational weight gain and preterm delivery. Obstet Gynecol. 1997;89:865–73.

    Article  PubMed  CAS  Google Scholar 

  25. Smith GC, Shah I, Pell JP, Crossley JA, Dobbie R. Maternal obesity in early pregnancy and risk of spontaneous and elective preterm deliveries: a retrospective cohort study. Am J Public Health. 2007;97:157–62.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li N, Liu E, Guo J, et al. Maternal prepregnancy body mass index and gestational weight gain on pregnancy outcomes. PLoS One. 2013;8, e82310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Thomson AM. Diet in pregnancy. Diet in relation to the course and outcome of pregnancy. Br J Nutr. 1959;13:509–25.

    Article  PubMed  CAS  Google Scholar 

  28. Scholl TO, Hediger ML, Schall JI, Fischer RL, Khoo CS. Low zinc intake during pregnancy: its association with preterm and very preterm delivery. Am J Epidemiol. 1993;137:1115–24.

    PubMed  CAS  Google Scholar 

  29. Olson CM, Strawderman MS. Modifiable behavioral factors in a biopsychosocial model predict inadequate and excessive gestational weight gain. J Am Diet Assoc. 2003;103:48–54.

    Article  PubMed  Google Scholar 

  30. Chuang CH, Stengel MR, Hwang SW et al. (2014) Behaviours of overweight and obese women during pregnancy who achieve and exceed recommended gestational weight gain. Obes Res Clin Pract. http://dx.doi.org/10.1016/j.orcp.2013.12.254.

  31. Rayco-Solon P, Fulford AJ, Prentice AM. Maternal preconceptional weight and gestational length. Am J Obstet Gynecol. 2005;192:1133–6.

    Article  PubMed  Google Scholar 

  32. Stein Z. Famine and human development: the Dutch hunger winter of 1944–1945. Oxford: Oxford University Press; 1975.

    Google Scholar 

  33. Bloomfield FH, Oliver MH, Hawkins P, et al. A periconceptional nutritional origin for noninfectious preterm birth. Science. 2003;300:606.

    Article  PubMed  Google Scholar 

  34. Miller G. Developmental biology. Hungry ewes deliver offspring early. Science. 2003;300:561–2.

    Article  PubMed  CAS  Google Scholar 

  35. Fowden AL, Ralph MM, Silver M. Nutritional regulation of uteroplacental prostaglandin production and metabolism in pregnant ewes and mares during late gestation. Expert Clin Endocrinol. 1994;102:212–21.

    Article  CAS  Google Scholar 

  36. Silver M, Fowden AL. Uterine prostaglandin F metabolite production in relation to glucose availability in late pregnancy and a possible influence of diet on time of delivery in the mare. J Reprod Fertil Suppl. 1982;32:511–9.

    PubMed  CAS  Google Scholar 

  37. Binienda Z, Massmann A, Mitchell MD, Gleed RD, Figueroa JP, Nathanielsz PW. Effect of food withdrawal on arterial blood glucose and plasma 13,14-dihydro-15-keto-prostaglandin F2 alpha concentrations and nocturnal myometrial electromyographic activity in the pregnant rhesus monkey in the last third of gestation: a model for preterm labor? Am J Obstet Gynecol. 1989;160:746–50.

    Article  PubMed  CAS  Google Scholar 

  38. Kaplan M, Eidelman AI, Aboulafia Y. Fasting and the precipitation of labor. The Yom Kippur effect. JAMA. 1983;250:1317–8.

    Article  PubMed  CAS  Google Scholar 

  39. Awwad J, Usta IM, Succar J, Musallam KM, Ghazeeri G, Nassar AH. The effect of maternal fasting during Ramadan on preterm delivery: a prospective cohort study. BJOG. 2012;119:1379–86.

    Article  PubMed  CAS  Google Scholar 

  40. Metzger BE, Ravnikar V, Vileisis RA, Freinkel N. “Accelerated starvation” and the skipped breakfast in late normal pregnancy. Lancet. 1982;1:588–92.

    Article  PubMed  CAS  Google Scholar 

  41. Herrmann TS, Siega-Riz AM, Hobel CJ, Aurora C, Dunkel-Schetter C. Prolonged periods without food intake during pregnancy increase risk for elevated maternal corticotropin-releasing hormone concentrations. Am J Obstet Gynecol. 2001;185:403–12.

    Article  PubMed  CAS  Google Scholar 

  42. Li XQ, Zhu P, Myatt L, Sun K. Roles of glucocorticoids in human parturition: a controversial fact? Placenta. 2014;35:291–6.

    Article  PubMed  CAS  Google Scholar 

  43. Gernand AD, Christian P, Schulze KJ, et al. Maternal nutritional status in early pregnancy is associated with body water and plasma volume changes in a pregnancy cohort in rural Bangladesh. J Nutr. 2012;142:1109–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Englund-Ogge L, Brantsaeter AL, Sengpiel V, et al. Maternal dietary patterns and preterm delivery: results from large prospective cohort study. BMJ. 2014;348:g1446.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Myhre R, Brantsaeter AL, Myking S, et al. Intake of probiotic food and risk of spontaneous preterm delivery. Am J Clin Nutr. 2011;93:151–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Myhre R, Brantsaeter AL, Myking S, et al. Intakes of garlic and dried fruits are associated with lower risk of spontaneous preterm delivery. J Nutr. 2013;143:1100–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Scholl TO, Hediger ML, Fischer RL, Shearer JW. Anemia vs iron deficiency: increased risk of preterm delivery in a prospective study. Am J Clin Nutr. 1992;55:985–8.

    PubMed  CAS  Google Scholar 

  48. Scholl TO, Hediger ML. Anemia and iron-deficiency anemia: compilation of data on pregnancy outcome. Am J Clin Nutr. 1994;59:492S–500; discussion 500S–501S.

    PubMed  CAS  Google Scholar 

  49. Klebanoff MA, Shiono PH, Selby JV, Trachtenberg AI, Graubard BI. Anemia and spontaneous preterm birth. Am J Obstet Gynecol. 1991;164:59–63.

    Article  PubMed  CAS  Google Scholar 

  50. Zhou LM, Yang WW, Hua JZ, Deng CQ, Tao X, Stoltzfus RJ. Relation of hemoglobin measured at different times in pregnancy to preterm birth and low birth weight in Shanghai, China. Am J Epidemiol. 1998;148:998–1006.

    Article  PubMed  CAS  Google Scholar 

  51. Scanlon KS, Yip R, Schieve LA, Cogswell ME. High and low hemoglobin levels during pregnancy: differential risks for preterm birth and small for gestational age. Obstet Gynecol. 2000;96:741–8.

    Article  PubMed  CAS  Google Scholar 

  52. Haider BA, Olofin I, Wang M, et al. Anaemia, prenatal iron use, and risk of adverse pregnancy outcomes: systematic review and meta-analysis. BMJ. 2013;346:f3443.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yi SW, Han YJ, Ohrr H. Anemia before pregnancy and risk of preterm birth, low birth weight and small-for-gestational-age birth in Korean women. Eur J Clin Nutr. 2013;67:337–42.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang Q, Ananth CV, Li Z, Smulian JC. Maternal anaemia and preterm birth: a prospective cohort study. Int J Epidemiol. 2009;38:1380–9.

    Article  PubMed  CAS  Google Scholar 

  55. Ren A, Wang J, Ye RW, Li S, Liu JM, Li Z. Low first-trimester hemoglobin and low birth weight, preterm birth and small for gestational age newborns. Int J Gynaecol Obstet. 2007;98:124–8.

    Article  PubMed  CAS  Google Scholar 

  56. Brabin BJ, Ginny M, Sapau J, Galme K, Paino J. Consequences of maternal anaemia on outcome of pregnancy in a malaria endemic area in Papua New Guinea. Ann Trop Med Parasitol. 1990;84:11–24.

    PubMed  CAS  Google Scholar 

  57. Garn SM, Ridella SA, Petzold AS, Falkner F. Maternal hematologic levels and pregnancy outcomes. Semin Perinatol. 1981;5:155–62.

    PubMed  CAS  Google Scholar 

  58. Murphy JF, O’Riordan J, Newcombe RG, Coles EC, Pearson JF. Relation of haemoglobin levels in first and second trimesters to outcome of pregnancy. Lancet. 1986;1:992–5.

    Article  PubMed  CAS  Google Scholar 

  59. Pena-Rosas JP, Viteri FE (2009) Effects and safety of preventive oral iron or iron + folic acid supplementation for women during pregnancy. Cochrane Database Syst Rev. CD004736.

    Google Scholar 

  60. Scholl TO. High third-trimester ferritin concentration: associations with very preterm delivery, infection, and maternal nutritional status. Obstet Gynecol. 1998;92:161–6.

    Article  PubMed  CAS  Google Scholar 

  61. Goldenberg RL, Tamura T, DuBard M, Johnston KE, Copper RL, Neggers Y. Plasma ferritin and pregnancy outcome. Am J Obstet Gynecol. 1966;175:1356–9.

    Article  Google Scholar 

  62. Allen LH. Biological mechanisms that might underlie iron’s effects on fetal growth and preterm birth. J Nutr. 2001;131:581S–9.

    PubMed  CAS  Google Scholar 

  63. Imdad A, Bhutta ZA. Routine iron/folate supplementation during pregnancy: effect on maternal anaemia and birth outcomes. Paediatr Perinat Epidemiol. 2012;26 Suppl 1:168–77.

    Article  PubMed  Google Scholar 

  64. Zeng L, Dibley MJ, Cheng Y, et al. Impact of micronutrient supplementation during pregnancy on birth weight, duration of gestation, and perinatal mortality in rural western China: double blind cluster randomised controlled trial. BMJ. 2008;337:a2001.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Aranda N, Ribot B, Garcia E, Viteri FE, Arija V. Pre-pregnancy iron reserves, iron supplementation during pregnancy, and birth weight. Early Hum Dev. 2011;87:791–7.

    Article  PubMed  CAS  Google Scholar 

  66. Saaka M, Oosthuizen J, Beatty S. Effect of prenatal zinc supplementation on birthweight. J Health Popul Nutr. 2009;27:619–31.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Neggers YH, Cutter GR, Acton RT, et al. A positive association between maternal serum zinc concentration and birth weight. Am J Clin Nutr. 1990;51:678–84.

    PubMed  CAS  Google Scholar 

  68. Kirksey A, Wachs TD, Yunis F, et al. Relation of maternal zinc nutriture to pregnancy outcome and infant development in an Egyptian village. Am J Clin Nutr. 1994;60:782–92.

    PubMed  CAS  Google Scholar 

  69. Mori R, Ota E, Middleton P, Tobe-Gai R, Mahomed K, Bhutta ZA. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst Rev. 2012;7, CD000230.

    PubMed  Google Scholar 

  70. Chaffee BW, King JC. Effect of zinc supplementation on pregnancy and infant outcomes: a systematic review. Paediatr Perinat Epidemiol. 2012;26(Suppl):118–37.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Cherry FF, Sandstead HH, Rojas P, Johnson LK, Batson HK, Wang XB. Adolescent pregnancy: associations among body weight, zinc nutriture, and pregnancy outcome. Am J Clin Nutr. 1989;50:945–54.

    PubMed  CAS  Google Scholar 

  72. Goldenberg RL, Tamura T, Neggers Y, et al. The effect of zinc supplementation on pregnancy outcome. JAMA. 1995;274:463–8.

    Article  PubMed  CAS  Google Scholar 

  73. Osendarp SJ, van Raaij JM, Arifeen SE, Wahed M, Baqui AH, Fuchs GJ. A randomized, placebo-controlled trial of the effect of zinc supplementation during pregnancy on pregnancy outcome in Bangladeshi urban poor. Am J Clin Nutr. 2000;71:114–9.

    PubMed  CAS  Google Scholar 

  74. Caulfield LE, Zavaleta N, Figueroa A, Leon Z. Maternal zinc supplementation does not affect size at birth or pregnancy duration in Peru. J Nutr. 1999;129:1563–8.

    PubMed  CAS  Google Scholar 

  75. Tamura T, Picciano MF. Folate and human reproduction. Am J Clin Nutr. 2006;83:993–1016.

    PubMed  CAS  Google Scholar 

  76. Bailey RL, Dodd KW, Gahche JJ, et al. Total folate and folic acid intake from foods and dietary supplements in the United States: 2003–2006. Am J Clin Nutr. 2010;91:231–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Hamner HC, Cogswell ME, Johnson MA. Acculturation factors are associated with folate intakes among Mexican American women. J Nutr. 2011;141:1889–97.

    Article  PubMed  CAS  Google Scholar 

  78. Honein MA, Paulozzi LJ, Mathews TJ, Erickson JD, Wong LY. Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects. JAMA. 2001;285:2981–6.

    Article  PubMed  CAS  Google Scholar 

  79. Berti C, Fekete K, Dullemeijer C, et al. Folate intake and markers of folate status in women of reproductive age, pregnant and lactating women: a meta-analysis. J Nutr Metab. 2012;2012:470656.

    Google Scholar 

  80. Shaw GM, Carmichael SL, Nelson V, Selvin S, Schaffer DM. Occurrence of low birthweight and preterm delivery among California infants before and after compulsory food fortification with folic acid. Publ Health Rep. 2004;119:170–3.

    Google Scholar 

  81. Scholl TO, Hediger ML, Schall JI, Khoo CS, Fischer RL. Dietary and serum folate: their influence on the outcome of pregnancy. Am J Clin Nutr. 1996;63:520–5.

    PubMed  CAS  Google Scholar 

  82. Johnson WG, Scholl TO, Spychala JR, Buyske S, Stenroos ES, Chen X. Common dihydrofolate reductase 19-base pair deletion allele: a novel risk factor for preterm delivery. Am J Clin Nutr. 2005;81:664–8.

    PubMed  CAS  Google Scholar 

  83. Siega-Riz AM, Savitz DA, Zeisel SH, Thorp JM, Herring A. Second trimester folate status and preterm birth. Am J Obstet Gynecol. 2004;191:1851–7.

    Article  PubMed  CAS  Google Scholar 

  84. Bodnar LM, Himes KP, Venkataramanan R, et al. Maternal serum folate species in early pregnancy and risk of preterm birth. Am J Clin Nutr. 2010;92:864–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Scholl TO, Johnson WG. Folic acid: influence on the outcome of pregnancy. Am J Clin Nutr. 2000;71:1295S–303.

    PubMed  CAS  Google Scholar 

  86. Bukowski R, Malone FD, Porter FT, et al. Preconceptional folate supplementation and the risk of spontaneous preterm birth: a cohort study. PLoS Med. 2009;6, e1000061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Czeizel AE, Puho EH, Langmar Z, Acs N, Banhidy F. Possible association of folic acid supplementation during pregnancy with reduction of preterm birth: a population-based study. Eur J Obstet Gynecol Reprod Biol. 2010;148:135–40.

    Article  PubMed  CAS  Google Scholar 

  88. Li Z, Ye R, Zhang L, Li H, Liu J, Ren A. Periconceptional folic acid supplementation and the risk of preterm births in China: a large prospective cohort study. Int J Epidemiol. 2014 Mar 5. [Epub ahead of print]

    Google Scholar 

  89. Fekete K, Berti C, Trovato M, et al. Effect of folate intake on health outcomes in pregnancy: a systematic review and meta-analysis on birth weight, placental weight and length of gestation. Nutr J. 2012;11:75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Lassi ZS, Salam RA, Haider BA, Bhutta ZA. Folic acid supplementation during pregnancy for maternal health and pregnancy outcomes. Cochrane Database Syst Rev. 2013;3, CD006896.

    PubMed  Google Scholar 

  91. Charles DH, Ness AR, Campbell D, Smith GD, Whitley E, Hall MH. Folic acid supplements in pregnancy and birth outcome: re-analysis of a large randomised controlled trial and update of Cochrane review. Paediatr Perinat Epidemiol. 2005;19:112–24.

    Article  PubMed  Google Scholar 

  92. Baumslag N, Edelstein T, Metz J. Reduction of incidence of prematurity by folic acid supplementation in pregnancy. Br Med J. 1970;1:16–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Mason JB, Dickstein A, Jacques PF, et al. A temporal association between folic acid fortification and an increase in colorectal cancer rates may be illuminating important biological principles: a hypothesis. Cancer Epidemiol Biomarkers Prev. 2007;16:1325–9.

    Article  PubMed  CAS  Google Scholar 

  94. Gillette GS, Abellan Van Kan G, Andrieu S, et al. IANA task force on nutrition and cognitive decline with aging. J Nutr Health Aging. 2007;11:132–52.

    Google Scholar 

  95. Sengpiel V, Bacelis J, Myhre R, et al. Folic acid supplementation, dietary folate intake during pregnancy and risk for spontaneous preterm delivery: a prospective observational cohort study. BMC Pregnancy Childbirth. 2013;13:160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Steegers-Theunissen RP, Obermann-Borst SA, Kremer D, et al. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS One. 2009;4, e7845.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Hoyo C, Murtha AP, Schildkraut JM, et al. Methylation variation at IGF2 differentially methylated regions and maternal folic acid use before and during pregnancy. Epigenetics. 2011;6:928–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Vollset SE, Refsum H, Irgens LM, et al. Plasma total homocysteine, pregnancy complications, and adverse pregnancy outcomes: the Hordaland Homocysteine study. Am J Clin Nutr. 2000;71:962–8.

    PubMed  CAS  Google Scholar 

  99. Ronnenberg AG, Goldman MB, Chen D, et al. Preconception homocysteine and B vitamin status and birth outcomes in Chinese women. Am J Clin Nutr. 2002;76:1385–91.

    PubMed  CAS  Google Scholar 

  100. Murphy MM, Scott JM, Arija V, Molloy AM, Fernandez-Ballart JD. Maternal homocysteine before conception and throughout pregnancy predicts fetal homocysteine and birth weight. Clin Chem. 2004;50:1406–12.

    Article  PubMed  CAS  Google Scholar 

  101. Malinow MR, Rajkovic A, Duell PB, Hess DL, Upson BM. The relationship between maternal and neonatal umbilical cord plasma homocyst(e)ine suggests a potential role for maternal homocyst(e)ine in fetal metabolism. Am J Obstet Gynecol. 1998;178:228–33.

    Article  PubMed  CAS  Google Scholar 

  102. Dhobale M, Chavan P, Kulkarni A, Mehendale S, Pisal H, Joshi S. Reduced folate, increased vitamin B(12) and homocysteine concentrations in women delivering preterm. Ann Nutr Metab. 2012;61:7–14.

    Article  PubMed  CAS  Google Scholar 

  103. Bergen NE, Jaddoe VW, Timmermans S, et al. Homocysteine and folate concentrations in early pregnancy and the risk of adverse pregnancy outcomes: the Generation R Study. BJOG. 2012;119:739–51.

    Article  PubMed  CAS  Google Scholar 

  104. IOM (Institute of Medicine). Dietary reference intakes for calcium and vitamin D. Washington, DC: The National Academies Press; 2011.

    Google Scholar 

  105. Scholl TO, Chen X, Stein TP. Vitamin D, secondary hyperparathyroidism, and preeclampsia. Am J Clin Nutr. 2013;98:787–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Zhang J, Villar J, Sun W, et al. Blood pressure dynamics during pregnancy and spontaneous preterm birth. Am J Obstet Gynecol. 2007;197:162.e161–166.

    Google Scholar 

  107. Repke JT, Villar J. Pregnancy-induced hypertension and low birth weight: the role of calcium. Am J Clin Nutr. 1991;54:237S–41.

    PubMed  CAS  Google Scholar 

  108. Belizan JM, Villar J, Gonzalez L, Campodonico L, Bergel E. Calcium supplementation to prevent hypertensive disorders of pregnancy. N Engl J Med. 1991;325:1399–405.

    Article  PubMed  CAS  Google Scholar 

  109. Hofmeyr GJ, Mlokoti Z, Nikodem VC, et al. Calcium supplementation during pregnancy for preventing hypertensive disorders is not associated with changes in platelet count, urate, and urinary protein: a randomized control trial. Hypertens Pregnancy. 2008;27:299–304.

    Article  PubMed  CAS  Google Scholar 

  110. Carroli G, Merialdi M, Wojdyla D, et al. Effects of calcium supplementation on uteroplacental and fetoplacental blood flow in low-calcium-intake mothers: a randomized controlled trial. Am J Obstet Gynecol. 2010;202:45.e41–9.

    Article  CAS  Google Scholar 

  111. Scholl TO, Hediger ML, Schall JI. Maternal growth and fetal growth: pregnancy course and outcome in the Camden Study. Ann N Y Acad Sci. 1997;817:292–301.

    Article  PubMed  CAS  Google Scholar 

  112. Sowers MF, Scholl T, Harris L, Jannausch M. Bone loss in adolescent and adult pregnant women. Obstet Gynecol. 2000;96:189–93.

    Article  PubMed  CAS  Google Scholar 

  113. Lopez-Jaramillo P, Narvaez M, Weigel RM, Yepez R. Calcium supplementation reduces the risk of pregnancy-induced hypertension in an Andes population. Br J Obstet Gynaecol. 1989;96:648–55.

    Article  PubMed  CAS  Google Scholar 

  114. Lopez-Jaramillo P, Narvaez M, Felix C, Lopez A. Dietary calcium supplementation and prevention of pregnancy hypertension. Lancet. 1990;335:293.

    Article  PubMed  CAS  Google Scholar 

  115. Villar J, Repke JT. Calcium supplementation during pregnancy may reduce preterm delivery in high-risk populations. Am J Obstet Gynecol. 1990;163:1124–31.

    Article  PubMed  CAS  Google Scholar 

  116. Bucher HC, Guyatt GH, Cook RJ, et al. Effect of calcium supplementation on pregnancy-induced hypertension and preeclampsia: a meta-analysis of randomized controlled trials. JAMA. 1996;275:1113–7.

    Article  PubMed  CAS  Google Scholar 

  117. Levine RJ, Hauth JC, Curet LB, et al. Trial of calcium to prevent preeclampsia. N Engl J Med. 1997;337:69–76.

    Article  PubMed  CAS  Google Scholar 

  118. Crowther CA, Hiller JE, Pridmore B, et al. Calcium supplementation in nulliparous women for the prevention of pregnancy-induced hypertension, preeclampsia and preterm birth: an Australian randomized trial. FRACOG and the ACT Study Group. Aust N Z J Obstet Gynaecol. 1999;39:12–8.

    Article  PubMed  CAS  Google Scholar 

  119. Villar J, Abdel-Aleem H, Merialdi M, et al. World Health Organization randomized trial of calcium supplementation among low calcium intake pregnant women. Am J Obstet Gynecol. 2006;194:639–49.

    Article  PubMed  CAS  Google Scholar 

  120. Hofmeyr GJ, Lawrie TA, Atallah AN, Duley L. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst Rev. 2010;(8):CD001059.

    Google Scholar 

  121. Buppasiri P, Lumbiganon P, Thinkhamrop J, Ngamjarus C, Laopaiboon M. Calcium supplementation (other than for preventing or treating hypertension) for improving pregnancy and infant outcomes. Cochrane Database Syst Rev. 2011;(10):CD007079.

    Google Scholar 

  122. Scholl TO, Chen X, Stein TP. Maternal calcium metabolic stress and fetal growth. Am J Clin Nutr. 2014;99:918–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Lurie S, Fink A, Hagay ZJ. Parathyroid hormone levels in preterm and term labor. J Perinat Med. 1997;25:292–4.

    Article  PubMed  CAS  Google Scholar 

  124. Belizan JM, Villar J, Repke J. The relationship between calcium intake and pregnancy-induced hypertension: up-to-date evidence. Am J Obstet Gynecol. 1988;158:898–902.

    Article  PubMed  CAS  Google Scholar 

  125. McMullen TP, Learoyd DL, Williams DC, Sywak MS, Sidhu SB, Delbridge LW. Hyperparathyroidism in pregnancy: options for localization and surgical therapy. World J Surg. 2010;34:1811–6.

    Article  PubMed  Google Scholar 

  126. Hultin H, Hellman P, Lundgren E, Olovsson M, Ekbom A, Rastad J, Montgomery SM. Association of parathyroid adenoma and pregnancy with preeclampsia. J Clin Endocrinol Metab. 2009;94:3394–9.

    Article  PubMed  CAS  Google Scholar 

  127. Samadi AR, Mayberry RM. Maternal hypertension and spontaneous preterm births among black women. Obstet Gynecol. 1998;91:899–904.

    Article  PubMed  CAS  Google Scholar 

  128. Bramham K, Parnell B, Nelson-Piercy C, Seed PT, Poston L, Chappell LC. Chronic hypertension and pregnancy outcomes: systematic review and meta-analysis. BMJ. 2014;348:g2301.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Morley R, Carlin JB, Pasco JA, Wark JD. Maternal 25-hydroxyvitamin D and parathyroid hormone concentrations and offspring birth size. J Clin Endocrinol Metab. 2006;91:906–12.

    Article  PubMed  CAS  Google Scholar 

  130. Bodnar LM, Klebanoff MA, Gernand AD, et al. Maternal vitamin D status and spontaneous preterm birth by placental histology in the US Collaborative Perinatal Project. Am J Epidemiol. 2014;179:168–76.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Bodnar LM, Rouse DJ, Momirova V, et al. Maternal 25-hydroxyvitamin d and preterm birth in twin gestations. Obstet Gynecol. 2013;122:91–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Hollis BW, Wagner CL. Vitamin D and pregnancy: skeletal effects, nonskeletal effects, and birth outcomes. Calcif Tissue Int. 2013;92:128–39.

    Article  PubMed  CAS  Google Scholar 

  133. Thorp JM, Camargo CA, McGee PL, et al. Vitamin D status and recurrent preterm birth: a nested case-control study in high-risk women. BJOG. 2012;119:1617–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Baker AM, Haeri S, Camargo Jr CA, Stuebe AM, Boggess KA. A nested case-control study of first-trimester maternal vitamin D status and risk for spontaneous preterm birth. Am J Perinatol. 2011;28:667–72.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Schneuer FJ, Roberts CL, Guilbert C, et al. Effects of maternal serum 25-hydroxyvitamin D concentrations in the first trimester on subsequent pregnancy outcomes in an Australian population. Am J Clin Nutr. 2014;99:287–95.

    Article  PubMed  CAS  Google Scholar 

  136. Coletta JM, Bell SJ, Roman AS. Omega-3 fatty acids and pregnancy. Rev Obstet Gynecol. 2010;3:163–71.

    PubMed  PubMed Central  Google Scholar 

  137. Miles EA, Noakes PS, Kremmyda LS, et al. The Salmon in Pregnancy Study: study design, subject characteristics, maternal fish and marine n-3 fatty acid intake, and marine n-3 fatty acid status in maternal and umbilical cord blood. Am J Clin Nutr. 2011;94:1986S–92.

    Article  PubMed  CAS  Google Scholar 

  138. Carlson SE, Colombo J, Gajewski BJ. DHA supplementation and pregnancy outcomes. Am J Clin Nutr. 2013. doi:10.3945/ajcn.112.050021.

    Google Scholar 

  139. Lucas M, Dewailly E, Muckle G, et al. Gestational age and birth weight in relation to n-3 fatty acids among Inuit (Canada). Lipids. 2004;39:617–26.

    Article  PubMed  CAS  Google Scholar 

  140. People’s League of Health. Nutrition of expectant and nursing mothers. Lancet. 1942;240:10–2.

    Article  Google Scholar 

  141. Olsen SF, Sørensen JD, Secher NJ, et al. Randomised controlled trial of effect of fish-oil supplementation on pregnancy duration. Lancet. 1992;25:1003–7.

    Article  Google Scholar 

  142. Smuts CM, Huang M, Mundy D, et al. A randomized trial of docosahexaenoic acid supplementation during the third trimester of pregnancy. Obstet Gynecol. 2003;101:469–79.

    Article  PubMed  CAS  Google Scholar 

  143. Olsen SF, Secher NJ, Tabor A, et al. Randomised clinical trials of fish oil supplementation in high risk pregnancies. Fish Oil Trials in Pregnancy (FOTIP) Team. BJOG. 2000;107:382–95.

    Article  PubMed  CAS  Google Scholar 

  144. Harper M, Thom E, Klebanoff MA, et al. Omega-3 fatty acid supplementation to prevent recurrent preterm birth: a randomized controlled trial. Obstet Gynecol. 2010;115:234–42. doi:10.1097/AOG.0b013e3181cbd60e.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Makrides M, Duley L, Olsen SF. Marine oil, and other prostaglandin precursor, supplementation for pregnancy uncomplicated by pre-eclampsia or intrauterine growth restriction (review). Cochrane Database Syst Rev. 2006;3, CD003402.

    PubMed  Google Scholar 

  146. Szajewska H, Horvath A, Koletzko B. Effect of n-3 long-chain polyunsaturated fatty acid supplementation of women with low-risk pregnancies on pregnancy outcomes and growth measures at birth: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2006;83:1337–44.

    PubMed  CAS  Google Scholar 

  147. Leventakou V, Roumeliotaki T, Martinez D, et al. Fish intake during pregnancy, fetal growth, and gestational length in 19 European birth cohort studies. Am J Clin Nutr. 2014;99:506–19.

    Article  PubMed  CAS  Google Scholar 

  148. Klebanoff MA, Harper M, Lai Y, et al. Fish consumption, erythrocyte fatty acids, and preterm birth. Obstet Gynecol. 2011;117:1071–7. doi:10.1097/AOG.0b013e31821645dc.

    Article  PubMed  PubMed Central  Google Scholar 

  149. What you need to know about mercury in fish and shellfish. U.S. Food and Drug Administration. http://www.fda.gov/food/foodsafety/product-specificinformation/seafood/foodbornepathogenscontaminants/merthylmercury/ucm115662.htm. Updated 21 Nov 2011, Accessed 17 Nov 2012.

  150. Robbins CL, Zapata LB, Farr SL, et al. (2014) Core state preconception health indicators—pregnancy risk assessment monitoring system and behavioral risk factor surveillance system, 2009. MMWR Surveill Summ. 2014;63:1–62. http://www.cdc.gov/mmwr/preview/mmwrhtml/ss6303a1.htm.

  151. Popa AD, Nita O, Graur LI, et al. Nutritional knowledge as a determinant of vitamin and mineral supplementation during pregnancy. BMC Public Health. 2013;13:1105. doi:10.1186/1471-2458-13-1105.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Pouchieu C, Lévy R, Faure C, et al. (2013) Socioeconomic, lifestyle and dietary factors associated with dietary supplement use during pregnancy. PLoS One. 2013;13(8):e70733. doi:10.1371/journal.pone.0070733. eCollection 2013.

  153. Tessema J, Jefferds ME, Cogswell M, Carlton E. Motivators and barriers to prenatal supplement use among minority women in the United States. J Am Diet Assoc. 2009;109:102–8. doi:10.1016/j.jada.2008.10.013.

    Article  PubMed  Google Scholar 

  154. Scholl TO, Hediger ML, Bendich A, et al. Use of multivitamin/mineral prenatal supplements: influence on the outcome of pregnancy. Am J Epidemiol. 1997;146:134–41.

    Article  PubMed  CAS  Google Scholar 

  155. Catov JM, Bodnar LM, Ness RB, Markovic N, Roberts JM. Association of periconceptional multivitamin use and risk of preterm or small-for-gestational-age births. Am J Epidemiol. 2007;166:296–303.

    Article  PubMed  Google Scholar 

  156. Catov JM, Bodnar LM, Olsen J, Olsen S, Nohr EA. Periconceptional multivitamin use and risk of preterm or small-for-gestational-age births in the Danish National Birth Cohort. Am J Clin Nutr. 2011;94:906–12. doi:10.3945/ajcn.111.012393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Fawzi WW, Msamanga GI, Spiegelman D, et al. Randomised trial of effects of vitamin supplements on pregnancy outcomes and T cell counts in HIV-1-infected women in Tanzania. Lancet. 1998;16:1477–82.

    Article  Google Scholar 

  158. Fawzi WW, Msamanga GI, Urassa W, et al. Vitamins and perinatal outcomes among HIV-negative women in Tanzania. N Engl J Med. 2007;356:1423–31.

    Article  PubMed  CAS  Google Scholar 

  159. Christian P, Khatry SK, Katz J, et al. Effects of alternative maternal micronutrient supplements on low birth weight in rural Nepal: double blind randomised community trial. BMJ. 2003;326:1–6.

    Article  Google Scholar 

  160. Ramakrishnan U, González-Cossío T, Neufeld LM, Rivera J, Martorell M. Multiple micronutrient supplementation during pregnancy does not lead to greater infant birth size than does iron-only supplementation: a randomized controlled trial in a semirural community in Mexico. Am J Clin Nutr. 2003;77:720–5.

    PubMed  CAS  Google Scholar 

  161. Kaestel P, Michaelsen KF, Aaby P, Friis H. Effects of prenatal multimicronutrient supplements on birth weight and perinatal mortality: a randomised, controlled trial in Guinea-Bissau. Eur J Clin Nutr. 2005;59:1081–9.

    Article  PubMed  CAS  Google Scholar 

  162. Liu JM, Mei Z, Ye R, Serdula MK, Ren A, Cogswell ME. Micronutrient supplementation and pregnancy outcomes: double-blind randomized controlled trial in China. JAMA Intern Med. 2013;173:276–82. doi:10.1001/jamainternmed.2013.1632.

    Article  PubMed  CAS  Google Scholar 

  163. Zeng L, Yan H, Cheng Y, Dibley MJ. Modifying effects of wealth on the response to nutrient supplementation in pregnancy on birth weight, duration of gestation and perinatal mortality in rural western China: double-blind cluster randomized controlled trial. Int J Epidemiol. 2011;40:350–62. doi:10.1093/ije/dyq262.

    Article  PubMed  Google Scholar 

  164. Haider BA, Bhutta ZA. Multiple-micronutrient supplementation for women during pregnancy. Cochrane Database Syst Rev. 2012;11, CD004905. doi:10.1002/14651858.CD004905.pub3.

    PubMed  Google Scholar 

  165. Shah PS, Ohlsson A, on behalf of the Knowledge Synthesis Group on Determinants of Low Birth Weight and Preterm Births. Effects of prenatal multimicronutrient supplementation on pregnancy outcomes: a meta-analysis. CMAJ. 2009;180:E99–108. doi:10.1503/cmaj.081777.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Fall CH, Fisher DJ, Osmond C, et al. Multiple micronutrient supplementation during pregnancy in low-income countries: a meta-analysis of effects on birth size and length of gestation. Food Nutr Bull. 2009;30:S533–46.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Ramakrishnan U, Grant FK, Goldenberg T, Bui V, Imdad A, Bhutta ZA. Effect of multiple micronutrient supplementation on pregnancy and infant outcomes: a systematic review. Paediatr Perinat Epidemiol. 2012;26:153–67. doi:10.1111/j.1365-3016.2012.01276.x.

    Article  PubMed  Google Scholar 

  168. Irgens HU, Reisaeter L, Irgens LM, Lie RT. Long term mortality of mothers and fathers after pre-eclampsia: population based cohort study. BMJ. 2001;323:1213–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Bonamy AK, Parikh NI, Cnattingius S, Ludvigsson JF, Ingelsson E. Birth characteristics and subsequent risks of maternal cardiovascular disease: effects of gestational age and fetal growth. Circulation. 2011;124:2839–46. doi:10.1161/CIRCULATIONAHA.111.034884.

    Article  PubMed  Google Scholar 

  170. Catov JM, Newman AB, Roberts JM, et al. Preterm delivery and later maternal cardiovascular disease risk. Epidemiology. 2007;18:733–9.

    Article  PubMed  Google Scholar 

  171. Hastie CE, Smith GC, Mackay DF, Pell JP. Maternal risk of ischaemic heart disease following elective and spontaneous pre-term delivery: retrospective cohort study of 750 350 singleton pregnancies. Int J Epidemiol. 2011;40:914–9. doi:10.1093/ije/dyq270.

    Article  PubMed  Google Scholar 

  172. Kessous R, Shoham-Vardi I, Pariente G, Holcberg G, Sheiner E. An association between preterm delivery and long-term maternal cardiovascular morbidity. Am J Obstet Gynecol. 2013;209:368.e1–8. doi:10.1016/j.ajog.2013.05.041.

    Article  Google Scholar 

  173. Magnussen EB, Vatten LJ, Myklestad K, Salvesen KÅ, Romundstad PR. Cardiovascular risk factors prior to conception and the length of pregnancy: population-based cohort study. Am J Obstet Gynecol. 2011;204:526.e1–8. doi:10.1016/j.ajog.2011.02.016.

    Article  Google Scholar 

  174. Scholl TO, Chen X, Goldberg GS, Khusial PR, Stein TP. Maternal diet, C-reactive protein, and the outcome of pregnancy. J Am Coll Nutr. 2011;30:233–40.

    Article  PubMed  CAS  Google Scholar 

  175. Khoury J, Henriksen T, Christophersen B, Tonstad S. Effect of a cholesterol-lowering diet on maternal, cord, and neonatal lipids, and pregnancy outcome: a randomized clinical trial. Am J Obstet Gynecol. 2005;193:1292–301.

    Article  PubMed  CAS  Google Scholar 

  176. Chen X, Scholl TO. Association of elevated free fatty acids during late pregnancy with preterm delivery. Obstet Gynecol. 2008;112:297–303. doi:10.1097/AOG.0b013e3181802150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Jenny NS, Arnold AM, Kuller LH, et al. Soluble intracellular adhesion molecule-1 is associated with cardiovascular disease risk and mortality in older adults. J Thromb Haemost. 2006;4:107–13. doi:10.1111/j.1538-7836.2005.01678.x.

    Article  PubMed  CAS  Google Scholar 

  178. Chambers JC, Fusi L, Malik IS, Haskard DO, DeSwiet M, Kooner JS. Association of maternal endothelial dysfunction with preeclampsia. JAMA. 2001;285:1607–12.

    Article  PubMed  CAS  Google Scholar 

  179. Glowinska B, Urban M, Peczynska J, Florys B. Soluble adhesion molecules (sICAM-1, sVCAM-1) and selectins (sE selectin, sP selectin, sL selectin) levels in children and adolescents with obesity, hypertension, and diabetes. Metabolism. 2005;54:1020–6.

    Article  PubMed  CAS  Google Scholar 

  180. Meigs JB, Hu FB, Rifai N, Manson JE. Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA. 2004;291:1978–86.

    Article  PubMed  CAS  Google Scholar 

  181. Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis. 2003;170:191–203.

    Article  PubMed  CAS  Google Scholar 

  182. Chen X, Scholl TO. Maternal biomarkers of endothelial dysfunction and preterm delivery. PLoS One. 2014;9, e85716. doi:10.1371/journal.pone.0085716.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Barbaresko J, Koch M, Schulze MB, Nöthlings U. Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review. Nutr Rev. 2013;71:511–27.

    Article  PubMed  Google Scholar 

  184. Egger G. In search of a germ theory equivalent for chronic disease. Prev Chronic Dis. 2012;9:E95 110301. doi:http://dx.doi.org/10.5888/pcd9.110301.

  185. Goldenberg RL. The plausibility of micronutrient deficiency in relationship to perinatal infection. J Nutr. 2003;133:1645S–8.

    PubMed  CAS  Google Scholar 

  186. Tomkins A. Assessing micronutrient status in the presence of inflammation. J Nutr. 2003;133:1649S–55.

    PubMed  CAS  Google Scholar 

  187. Galland L. Diet and inflammation. Nutr Clin Pract. 2010;25:634–40. doi:10.1177/0884533610385703.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa O. Scholl Ph.D., M.P.H. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scholl, T.O., Chen, X. (2015). Maternal Nutrition and Preterm Delivery. In: Bendich, A., Deckelbaum, R. (eds) Preventive Nutrition. Nutrition and Health. Springer, Cham. https://doi.org/10.1007/978-3-319-22431-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22431-2_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22430-5

  • Online ISBN: 978-3-319-22431-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics