Skip to main content

Boundary-Value Problems for Differential-Algebraic Equations: A Survey

  • Chapter
Surveys in Differential-Algebraic Equations III

Abstract

We provide an overview on the state of the art concerning boundary-value problems for differential-algebraic equations. A wide survey material is analyzed, in particular polynomial collocation and shooting methods. Moreover, new developments are presented such as the theory of linear boundary-value problems for arbitrary-index differential-algebraic equations as counterpart of the well-known classical version.

AMS Subject Classification (2010): 34A09, 65L80, 34B05, 34B15

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramov, A.A.: On transfer of boundary conditions for systems of linear ordinary differential equations (a variant of transfer method). USSR Comput. Math. Math. Phys. 1(3), 542–544 (1961)

    MathSciNet  Google Scholar 

  2. Amodio, P., Mazzia, F.: Numerical solution of differential algebraic equations and computation of consistent initial/boundary conditions. J. Comput. Appl. Math. 87, 135–146 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amodio, P., Mazzia, F.: An algorithm for the computation of consistent initial values for differential-algebraic equations. Numer. Algorithms 19, 13–23 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Anh, P.K.: Multipoint boundary-value problems for transferable differential-algebraic equations. I–linear case. Vietnam J. Math. 25(4), 347–358 (1997)

    Google Scholar 

  5. Anh, P.K.: Multipoint boundary-value problems for transferable differential-algebraic equations. II–quasilinear case. Vietnam J. Math. 26(4), 337–349 (1998)

    Google Scholar 

  6. Anh, P.K., Nghi, N.V.: On linear regular multipoint boundary-value problems for differential algebraic equations. Vietnam J. Math. 28(2), 183–188 (2000)

    MATH  MathSciNet  Google Scholar 

  7. Ascher, U., Lin, P.: Sequential regularization methods for nonlinear higher index DAEs. SIAM J. Sci. Comput. 18, 160–181 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ascher, U.M., Petzold, L.R.: Numerical methods for boundary value problems in differential-algebraic equations. In: Byrne, G.D., Schiesser, W.E. (eds.) Recent Developments in Numerical Methods and Software for ODEs/DAEs/PDEs, pp. 125–135. World Scientific, London/Singapore (1992)

    Chapter  Google Scholar 

  9. Ascher, U.M., Petzold, L.R.: Projected collocation for higher-order higher-index differential-algebraic equations. J. Comput. Appl. Math. 43, 243–259 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  11. Ascher, U., Spiteri, R.: Collocation software for boundary value differential-algebraic equations. SIAM J. Sci. Comput. 15, 938–952 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ascher, U., Christiansen, J., Russell, R.: Collocation software for boundary value ODEs. ACM Trans. Math. Softw. 7(209–222) (1981)

    Google Scholar 

  13. Ascher, U., Mattheij, R., Russell, R.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Prentice Hall, Englewood Cliffs, NJ (1988)

    MATH  Google Scholar 

  14. Auzinger, W., Kneisl, G., Koch, O., Weinmüller, E.: SBVP 1.0 – A MATLAB solver for singular boundary value problems. ANUM Preprint 2/02, Vienna University of Technology (2002)

    Google Scholar 

  15. Auzinger, W., Koch, O., Weinmüller, E.: Efficient collocation schemes for singular boundary value problems. Numer. Algorithms 31, 5–25 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Auzinger, W., Kneisl, G., Koch, O., Weinmüller, E.: A collocation code for boundary value problems in ordinary differential equations. Numer. Algorithms 33, 27–39 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Auzinger, W., Koch, O., Weinmüller, E.: Analysis of a new error estimate for collocation methods applied to singular boundary value problems. SIAM J. Numer. Anal. 42, 2366–2386 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Auzinger, W., Lehner, H., Weinmüller, E.: Defect-based a-posteriori error estimation for Index-1 DAEs. ASC Technical Report 20, Vienna University of Technology (2007)

    Google Scholar 

  19. Auzinger, W., Lehner, H., Weinmüller, E.: An efficient asymptotically correct error estimator for collocation solution to singular index-1 DAEs. BIT Numer. Math. 51, 43–65 (2011)

    Article  MATH  Google Scholar 

  20. Backes, A.: Extremalbedingungen für Optimierungs-Probleme mit Algebro-Differentialgleichungen. Logos, Berlin (2006). Dissertation, Humboldt-University Berlin (October 2005/January 2006)

    Google Scholar 

  21. Bader, G., Ascher, U.: A new basis implementation for a mixed order boundary value ODE solver. SIAM J. Sci. Stat. Comput. 8, 483–500 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  22. Bai, Y.: A perturbated collocation method for boundary value problems in differential-algebraic equations. Appl. Math. Comput. 45, 269–291 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Bai, Y.: Modified collocation methods for boundary value problems in differential-algebraic equations. Ph.D. thesis, Fachbereich Mathematik, Philipps-Universität, Marburg/Lahn (1991)

    Google Scholar 

  24. Bai, Y.: A modified Lobatto collocation for linear boundary value problems of differential-algebraic equations. Computing 49, 139–150 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Baiz, A.: Effiziente Lösung periodischer differential-algebraischer Gleichungssysteme in der Schaltungssimulation. Ph.D. thesis, Fachbereich Informatik, Technische Universität, Darmstadt. Shaker, Aachen (2003)

    Google Scholar 

  26. Balla, K.: Differential-algebraic equations and their adjoints. Dissertation, Doctor of the Hungarian Academy of Sciences, Hungarian Academy of Sciences, Budapest (2004)

    Google Scholar 

  27. Balla, K., März, R.: Transfer of boundary conditions for DAEs of index 1. SIAM J. Numer. Anal. 33(6), 2318–2332 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  28. Balla, K., März, R.: Linear differential-algebraic equations of index 1 and their adjoints. Results Math. 37, 13–35 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Balla, K., März, R.: A unified approach to linear differential-algebraic equations and their adjoints. J. Anal. Appl. 21(3), 783–802 (2002)

    MATH  Google Scholar 

  30. Balla, K., März, R.: Linear boundary value problems for differential-algebraic equations. Miskolc Math. Notes 5(1), 3–18 (2004)

    MATH  MathSciNet  Google Scholar 

  31. Barz, B., Suschke, E.: Numerische behandlung eines Algebro-Differentialgleichungssystems. RZ-Mitteilungen, Humboldt-Universität, Behandlung, Berlin (1994)

    Google Scholar 

  32. Bell, M., Sargent, R.: Optimal control of inequality constrained DAE systems. Comput. Chem. Eng. 24, 2385–2404 (2000)

    Article  Google Scholar 

  33. Biegler, L., Campbell, S., Mehrmann, V.: Control and Optimization with Differential-Algebraic Constraints. SIAM, Philadelphia (2011)

    Google Scholar 

  34. Bock, H., Eich, E., Schlöder, J.: Numerical solution of constrained least squares boundary value problems in differential-algebraic equations. In: Strehmel, K. (ed.) Numerical Treatment of Differential Equations, NUMDIFF-4. Teubner Texte zur Mathematik, vol. 104. Teubner, Leipzig (1987)

    Google Scholar 

  35. Brenan, K., Campbell, S., Petzold, L.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North Holland, New York (1989)

    MATH  Google Scholar 

  36. Brown, P., Hindmarsh, A., Petzold, L.: Consistent initial condition calculation for differential-algebraic systems. SIAM J. Sci. Comput. 19(5), 1495–1512 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  37. Callies, R.: Entwurfsoptimierung und optimale Steuerung. Differential-algebraische Systeme, Mehrgitter-Mehrzielansätze und numerische Realisierung. Habilitation, Technische Universität, München (2000)

    Google Scholar 

  38. Clark, K.D., Petzold, L.R.: Numerical solution of boundary value problems in differential-algebraic systems. SIAM J. Sci. Stat. Comput. 10, 915–936 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  39. de Boor, C., Swartz, B.: Collocation at Gaussian points. SIAM J. Numer. Anal. 10, 582–606 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  40. de Hoog, F., Weiss, R.: Difference methods for boundary value problems with a singularity for the first kind. SIAM J. Numer. Anal. 13, 775–813 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  41. Degenhardt, A.: A collocation method for boundary value problems of transferable differential-algebraic equations. Preprint (Neue Folge) 182, Humboldt-Universität zu Berlin, Sektion Mathematik (1988)

    Google Scholar 

  42. Degenhardt, A.: Collocation for transferable differential-algebraic equations. In: Griepentrog, E., Hanke, M., März, R. (eds.) Berlin Seminar on Differential-Algebraic Equations, Seminarberichte, vol. 92-1, pp. 83–104. Fachbereich Mathematik, Humboldt-Universität zu, Berlin (1992)

    Google Scholar 

  43. Dick, A., Koch, O., März, R., Weinmüller, E.: Convergence of collocation schemes for boundary value problems in nonlinear index-1 DAEs with a singular point. Math. Comput. 82(282), 893–918 (2013)

    Article  MATH  Google Scholar 

  44. Dokchan, R.: Numerical integration of differential-algebraic equations with harmless critical points. Ph.D. thesis, Institute of Mathematics, Humboldt-University, Berlin (2011)

    Google Scholar 

  45. Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics. B.G. Teubner, Stuttgart (1998)

    Book  MATH  Google Scholar 

  46. Engl, H.W., Hanke, M., Neubauer, A.: Tikhonov regularization of nonlinear differential-algebraic equations. In: Sabatier, P.C. (ed.) Inverse Methods in Action, pp. 92–105. Springer, Berlin/Heidelberg (1990)

    Chapter  Google Scholar 

  47. England, R., Lamour, R., Lopez-Estrada, J.: Multiple shooting using a dichotomically stable integrator for solving DAEs. Appl. Numer. Math. 42, 117–131 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  48. Estévez Schwarz, D., Lamour, R.: The computation of consistent initial values for nonlinear index-2 differential-algebraic equations. Numer. Algorithms 26(1), 49–75 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  49. Estévez Schwarz, D., Lamour, R.: Monitoring singularities while integrating DAEs. In: Progress in Differential-Algebraic Equations. Descriptor 2013, pp. 73–96. Differential-Algebraic Equations Forum. Springer, Heidelberg (2014)

    Google Scholar 

  50. Estévez Schwarz, D., Lamour, R.: Diagnosis of singular points of properly stated DAEs using automatic differentiation. Numer. Algorithms (2015, to appear)

    Google Scholar 

  51. Franke, C.: Numerical methods for the investigation of periodic motions in multibody dynamics. A collocation approach. Ph.D. thesis, Universität Ulm. Shaker, Aachen (1998)

    Google Scholar 

  52. Gear, C.W.: Maintaining solution invariants in the numerical solution of ODEs. SIAM J. Sci. Stat. Comput. 7, 734–743

    Google Scholar 

  53. Gerdts, M.: Direct shooting method for the numerical solution of higher-index DAE optimal control problems. J. Optim. Theory Appl. 117(2), 267–294 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  54. Gerdts, M.: A survey on optimal control problems with differential-algebraic equations. In: Ilchmann, A., Reis, T. (eds.) Surveys in Differential-Algebraic Equations II. Springer, Heidelberg (2015)

    Google Scholar 

  55. Griepentrog, E., März, R.: Differential-Algebraic Equations and Their Numerical Treatment. Teubner-Texte zur Mathematik, vol. 88. BSB B.G. Teubner Verlagsgesellschaft, Leipzig (1986)

    Google Scholar 

  56. Hanke, M.: On a least-squares collocation method for linear differential-algebraic equations. Numer. Math. 54, 79–90 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  57. Hanke, M.: Beiträge zur Regularisierung von Randwertaufgaben für Algebro-Differentialgleichungen mit höherem Index. Dissertation(B), Habilitation, Institut für Mathematik, Humboldt-Universität zu Berlin (1989)

    Google Scholar 

  58. Hanke, M.: On the regularization of index 2 differential-algebraic equations. J. Math. Anal. Appl. 151, 236–253 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  59. Hanke, M.: Asymptotic expansions for regularization methods of linear fully implicit differential-algebraic equations. Zeitschrift für Analysis und ihre Anwendungen 13, 513–535 (1994)

    MATH  MathSciNet  Google Scholar 

  60. Higueras, I., März, R.: Differential algebraic equations with properly stated leading term. Comput. Math. Appl. 48, 215–235 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  61. Higueras, I., März, R., Tischendorf, C.: Stability preserving integration of index-1 DAEs. Appl. Numer. Math. 45(2–3), 175–200 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  62. Ho, M.D.: A collocation solver for systems of boundary-value differential/algebraic equations. Comput. Chem. Eng. 7, 735–737 (1983)

    Article  Google Scholar 

  63. Houska, B., Diehl, M.: A quadratically convergent inexact SQP method for optimal control of differential algebraic equations. Optim. Control Appl. Methods 34, 396–414 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  64. Kalachev, L.V., O’Malley, R.E.: Boundary value problems for differential-algebraic equations. Numer. Funct. Anal. Optim. 16, 363–378 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  65. Keller, H.: Approximation methods for nonlinear problems with application to two-point boundary value problems. Math. Comput. 29, 464–474 (1975)

    Article  MATH  Google Scholar 

  66. Keller, H.B., White Jr., A.B.: Difference methods for boundary value problems in ordinary differential equations. SIAM J. Numer. Anal. 12(5), 791–802 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  67. Kiehl, M.: Sensitivity analysis of ODEs and DAEs – theory and implementation guide. Optim. Methods Softw. 10, 803–821 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  68. Koch, O.: Asymptotically correct error estimation for collocation methods applied to singular boundary value problems. Numer. Math. 101, 143–164 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  69. Koch, O., Weinmüller, E.: The convergence of shooting methods for singular boundary value problems. Math. Comput. 72(241), 289–305 (2003)

    Article  MATH  Google Scholar 

  70. Koch, O., Kofler, P., Weinmüller, E.: Initial value problems for systems of ordinary first and second order differential equations with a singularity of the first kind. Analysis 21, 373–389 (2001)

    Article  MATH  Google Scholar 

  71. Koch, O., März, R., Praetorius, D., Weinmüller, E.: Collocation for solving DAEs with singularities. ASC Report 32/2007, Vienna University of Technology, Institute for Analysis and Scientific Computing (2007)

    Google Scholar 

  72. Koch, O., März, R., Praetorius, D., Weinmüller, E.: Collocation methods for index-1 DAEs with a singularity of the first kind. Math. Comput. 79(269), 281–304 (2010)

    Article  MATH  Google Scholar 

  73. Kopelmann, A.: Ein Kollokationsverfahren für überführbare Algebro-Differentialbleichungen. Preprint (Neue Folge) 151, Humboldt-Universität zu Berlin, Sektion Mathematik (1987)

    Google Scholar 

  74. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations - Analysis and Numerical Solution. EMS Publishing House, Zürich (2006)

    Book  MATH  Google Scholar 

  75. Kunkel, P., Stöver, R.: Symmetric collocation methods for linear differential-algebraic boundary value problems. Numer. Math. 91, 475–501 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  76. Kunkel, P., Mehrmann, V., Stöver, R.: Symmetric collocation methods for unstructured nonlinear differential-algebraic equations of arbitrary index. Numer. Math. 98, 277–304 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  77. Lamour, R.: A shooting method for fully implicit index-2 differential-algebraic equations. SIAM J. Sci. Comput. 18(1), 94–114 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  78. Lamour, R.: Bestimmung optimaler Integrationsrichtungen beim Mehrfachschießverfahren zur Lösung von Zwei-Punkt-Randwertproblemen (1984). Wiss. Beitr., Martin-Luther-University Halle Wittenberg 1984/24(M 33), 66–70 (1984)

    Google Scholar 

  79. Lamour, R.: A well–posed shooting method for transferable DAEs. Numer. Math. 59 (1991)

    Google Scholar 

  80. Lamour, R.: Oscillations in differential–algebraic equations. In: Seminarbericht Nr. 92–1. Fachbereich Mathematik der Humboldt, Universität zu Berlin (1992)

    Google Scholar 

  81. Lamour, R.: Index determination and calculation of consistent initial values for DAEs. Comput. Math. Appl. 50(2), 1125–1140 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  82. Lamour, R., März, R.: Detecting structures in differential-algebraic equations: computational aspects. J. Comput. Appl. Math. 236(16), 4055–4066 (2012). Special Issue: 40 years of Numerical Math

    Google Scholar 

  83. Lamour, R., Mazzia, F.: Computation of consistent initial values for properly stated index-3 DAEs. BIT Numer. Math. 49, 161–175 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  84. Lamour, R., März, R., Winkler, R.: How floquet theory applies to index-1 differential-algebraic equations. J. Appl. Math. 217(2), 372–394 (1998)

    MATH  Google Scholar 

  85. Lamour, R., März, R., Winkler, R.: Stability of periodic solutions of index-2 differential algebraic systems. J. Math. Anal. Appl. 279, 475–494 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  86. Lamour, R., März, R., Tischendorf, C.: Differential-algebraic equations: a projector based analysis. In: Ilchman, A., Reis, T. (eds.) Differential-Algebraic Equations Forum. Springer, Berlin/Heidelberg/New York/Dordrecht/London (2013)

    Google Scholar 

  87. Lentini, M., März, R.: Conditioning and dichotomy in differential-algebraic equations. SIAM J. Numer. Anal. 27(6), 1519–1526 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  88. Lentini, M., März, R.: The condition of boundary value problems in transferable differential-algebraic equations. SIAM J. Numer. Anal. 27(4), 1001–1015 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  89. März, R.: On difference and shooting methods for boundary value problems in differential-algebraic equations. Zeitschrift für Angewandte Mathematik und Mechanik 64(11), 463–473 (1984)

    Article  MATH  Google Scholar 

  90. März, R.: On correctness and numerical treatment of boundary value problems in DAEs. Zhurnal Vychisl. Matem. i Matem. Fiziki 26(1), 50–64 (1986)

    MATH  Google Scholar 

  91. März, R.: Numerical methods for differential-algebraic equations. Acta Numer. 141–198 (1992)

    Google Scholar 

  92. März, R.: On linear differential-algebraic equations and linearizations. Appl. Numer. Math. 18, 267–292 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  93. März, R.: Managing the drift-off in numerical index-2 differential algebraic equations by projected defect corrections. Technical Report 96-32, Humboldt University, Institute of Mathematics (1996)

    Google Scholar 

  94. März, R.: Notes on linearization of differential-algebraic equations and on optimization with differential-algebraic constraints. Technical Report 2011-16, Humboldt-Universität zu Berlin, Institut für Mathematik (2011). http://www2.mathematik.hu-berlin.de/publ/pre/2011/M-11-16.html

  95. März, R.: Notes on linearization of DAEs and on optimization with differential-algebraic constraints. In: Biegler, L.T., Campbell, S.L., Mehrmann, V. (eds.) Control and Optimization with Differential-Algebraic Constraints. Advances in Design and Control, pp. 37–58. SIAM, Philadelphia (2012)

    Chapter  Google Scholar 

  96. März, R.: Differential-algebraic equations from a functional-analytic viewpoint: a survey. In: Ilchmann, A., Reis, T. (eds.) Surveys in Differential-Algebraic Equations II. Springer, Heidelberg (2015)

    Google Scholar 

  97. März, R., Riaza, R.: Linear differential-algebraic equations with properly leading term: a-critical points. Math. Comput. Model. Dyn. Syst. 13, 291–314 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  98. März, R., Weinmüller, E.B.: Solvability of boundary value problems for systems of singular differential-algebraic equations. SIAM J. Math. Anal. 24(1), 200–215 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  99. Moszyński, K.: A method of solving the boundary value problem for a system of linear ordinary differential equations. Algorithmy 11(3), 25–43 (1964)

    Google Scholar 

  100. Petry, T.: On the stability of the Abramov transfer for differential-algebraic equations of index 1. SIAM J. Numer. Anal. 35(1), 201–216 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  101. Petry, T.: Realisierung des Newton-Kantorovich-Verfahrens für nichtlineare Algebro-Differentialgleichungen mittels Abramov-Transfer. Ph.D. thesis, Humboldt-Universität zu, Berlin. Logos, Berlin (1998)

    Google Scholar 

  102. Rabier, P., Rheinboldt, W.: Theoretical and numerical analysis of differential-algebraic equations. In: Ciarlet, P.G., et al. (eds.) Handbook of Numerical Analysis, vol. VIII. Techniques of Scientific Computing (Part 4), pp. 183–540. North Holland/Elsevier, Amsterdam (2002)

    Google Scholar 

  103. Riaza, R.: Differential-Algebraic Systems. Analytical Aspects and Circuit Applications. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  104. Riaza, R.: DAEs in Circuit Modelling: a survey. In: Ilchmann, A., Reis, T. (eds.) Surveys in Differential-Algebraic Equations I. Differential-Algebraic Equations Forum. Springer, Heidelberg (2013)

    Google Scholar 

  105. Riaza, R., März, R.: Linear index-1 DAEs: regular and singular problems. Acta Appl. Math. 84, 29–53 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  106. Schulz, V.H., Bock, H.G., Steinbach, M.C.: Exploiting invariants in the numerical solution of multipoint boundary value problems for DAE. SIAM J. Sci. Comput. 19, 440–467 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  107. Selting, P., Zheng, Q.: Numerical stability analysis of oscillating integrated circuits. J. Comput. Appl. Math. 82, 367–378 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  108. Shampine, L.: Conservative laws and the numerical solution of ODEs. Comput. Math. Appl. 12, 1287–1296 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  109. Simeon, B.: Computational flexible multibody dynamics. In: A Differential-Algebraic Approach. Differential-Algebraic Equations Forum. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  110. Stetter, H.: The defect correction principle and discretization methods. Numer. Math. 29, 425–443 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  111. Stöver, R.: Numerische Lösung von linearen differential-algebraischen Randwertproblemen. Ph.D. thesis, Universität Bremen. Doctoral thesis, Logos, Berlin (1999)

    Google Scholar 

  112. Trenn, S.: Solution concepts for linear DAEs: a survey. In: Ilchmann, A., Reis, T. (eds.) Surveys in Differential-Algebraic Equations I, pp. 137–172. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  113. Wernsdorf, B.: Ein Kollokationsverfahren zur numerischen Bestimmung periodischer Lösungen von nichtlinearen algebro-differentialgleichungen. Ph.D. thesis, Sektion Mathematik, Humboldt-Universität zu Berlin (1984)

    Google Scholar 

  114. Wijckmans, P.M.E.J.: Conditioning of differential-algebraic equations and numerical solutions of multibody dynamics. Ph.D. thesis, Technische Universiteit, Eindhoven (1996)

    Google Scholar 

  115. Zadunaisky, P.: On the estimation of errors propagated in the numerical integration of ODEs. Numer. Math. 27, 21–39 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roswitha März .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Basics Concerning Regular DAEs

We collect basic facts on the DAE

$$\displaystyle{ f((Dx)'(t),x(t),t) = 0, }$$
(6.1)

which exhibits the involved derivative by means of an extra matrix-valued function D. The function \(f: \mathbb{R}^{n} \times \mathcal{D}_{f} \times \mathcal{I}_{f}\longrightarrow \mathbb{R}^{m}\), \(\mathcal{D}_{f} \times \mathcal{I}_{f} \subseteq \mathbb{R}^{m} \times \mathbb{R}\) open, is continuous and has continuous partial derivatives f y and f x with respect to the first two variables \(y \in \mathbb{R}^{n}\), \(x \in \mathcal{D}_{f}\). The partial Jacobian f y (y, x, t) is everywhere singular. The matrix function \(D: \mathcal{I}_{f} \rightarrow \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{n})\) is continuously differentiable and D(t) has constant rank r on the given interval \(\mathcal{I}_{f}\). Then, im D is a \(\mathcal{C}^{1}\)-subspace in \(\mathbb{R}^{n}\). We refer to [86] for proofs, motivation, and more details.

1.1.1 Regular DAEs, Regularity Regions

The DAE (6.1) is assumed to have a properly stated leading term. To simplify matters we further assume the nullspace \(\ker f_{y}(y,x,t)\) to be independent of y. Then, the transversality condition (2.3) pointwise induces the continuously differentiable (see [86, Lemma A.20]) border projector \(R: \mathcal{D}_{f} \times \mathcal{I}_{f} \rightarrow \mathcal{L}(\mathbb{R}^{n})\) given by

$$\displaystyle{ \mathrm{im}\,R(x,t) =\mathrm{ im}\,D(t),\;\ker R(x,t) =\ker f_{y}(y,x,t),\;(y,x,t) \in \mathbb{R}^{n} \times \mathcal{D}_{ f} \times \mathcal{I}_{f}. }$$
(6.2)

Next we depict the notion of regularity regions of a DAE (6.1). For this aim we introduce admissible matrix function sequences and associated projector functions (cf. [86]). Denote

$$\displaystyle\begin{array}{rcl} A(x^{1},x,t):& =& f_{ y}(D(t)x^{1} + D'(t)x,x,t) \in \mathcal{L}(\mathbb{R}^{n}, \mathbb{R}^{m}), {}\\ B(x^{1},x,t):& =& f_{ x}(D(t)x^{1} + D'(t)x,x,t) \in \mathcal{L}(\mathbb{R}^{m}), {}\\ G_{0}(x^{1},x,t):& =& A(x^{1},x,t)D(t) \in \mathcal{L}(\mathbb{R}^{m}), {}\\ B_{0}(x^{1},x,t):& =& B(x^{1},x,t) \in \mathcal{L}(\mathbb{R}^{m})\quad \text{for }\;x^{1} \in \mathbb{R}^{m},x \in \mathcal{D}_{ f},t \in \mathcal{I}_{f}. {}\\ \end{array}$$

The transversality condition (2.3) implies \(\ker G_{0}(x^{1},x,t) =\ker D(t)\). We introduce projector valued functions \(Q_{0},P_{0},\varPi _{0} \in \mathcal{C}(\mathcal{I}_{f},\mathcal{L}(\mathbb{R}^{m}))\) such that for all \(t \in \mathcal{I}_{f}\)

$$\displaystyle{ \mathrm{im}\,Q_{0}(t) = N_{0}(t):=\ker D(t),\quad \varPi _{0}(t):= P_{0}(t):= I - Q_{0}(t). }$$
(6.3)

Since D has constant rank, the orthoprojector function onto N 0 is as smooth as D. Therefore, as Q 0 we can choose the orthoprojector function onto N 0 which is even continuously differentiable. Next we determine the generalized inverse D(x, t) of D(t) pointwise for all arguments by

$$\displaystyle\begin{array}{rcl} D(x,t)^{-}D(t)D(x,t)^{-}& =& D(x,t)^{-}, {}\\ D(t)D(x,t)^{-}D(t)& =& D(t), {}\\ D(x,t)^{-}D(t)& =& P_{ 0}(t), {}\\ D(t)D(x,t)^{-}& =& R(x,t). {}\\ \end{array}$$

The resulting function D is continuous, if P 0 is continuously differentiable then so also is D .

Definition 6.1

Let the DAE (6.1) have a properly involved derivative and let \(\mathcal{G}\subseteq \mathcal{D}_{f} \times \mathcal{I}_{f}\) be open connected.

For the given level \(\kappa \in \mathbb{N}\), we call the sequence \(G_{0},\ldots,G_{\kappa }\) an admissible matrix function sequence associated with the DAE (6.1) on the set \(\mathcal{G}\), if it is built pointwise for all \((x,t) \in \mathcal{G}\) and all arising \(x^{j} \in \mathbb{R}^{m}\) by the rule:

set \(G_{0}:= AD,\,B_{0}:= B,\,N_{0}:=\ker G_{0}\),

for i ≥ 1:

$$\displaystyle\begin{array}{rcl} G_{i}:= G_{i-1} + B_{i-1}Q_{i-1},& &{}\end{array}$$
(6.4)
$$\displaystyle\begin{array}{rcl} & & \qquad \qquad \qquad N_{i}:=\ker G_{i},\quad \mathop{N}\limits^{\frown }\!_{i}:= (N_{0} + \cdots + N_{i-1}) \cap N_{i}, \\ & & \qquad \qquad \qquad \text{find a complement }X_{i}\text{ such that }N_{0} + \cdots + N_{i-1} = \mathop{N}\limits^{\frown }\!_{i} \oplus X_{i}, \\ & & \qquad \qquad \qquad \text{choose a projector }Q_{i}\text{ such that }\;\mathrm{im}\,Q_{i} = N_{i}\text{ and }X_{i} \subseteq \ker Q_{i}, \\ & & \qquad \qquad \qquad \text{set }P_{i}:= I - Q_{i},\;\varPi _{i}:=\varPi _{i-1}P_{i}, \\ & & B_{i}:= B_{i-1}P_{i-1} - G_{i}D^{-}(D\varPi _{ i}D^{-})'D\varPi _{ i-1}, {}\end{array}$$
(6.5)

and, additionally,

  1. (a)

    the matrix function G i has constant rank r i on \(\mathbb{R}^{mi} \times \mathcal{G}\), i = 0, , κ,

  2. (b)

    the intersection \(\mathop{N}\limits^{\frown }\!_{i}\) has constant dimension \(u_{i}:=\dim \mathop{N}\limits^{\frown }\!_{i}\) there,

  3. (c)

    the product function Π i is continuous and \(D\varPi _{i}D^{-}\) is continuously differentiable on \(\mathbb{R}^{mi} \times \mathcal{G}\), i = 0, , κ.

The projector functions \(Q_{0},\ldots,Q_{\kappa }\) linked with an admissible matrix function sequence are said to be admissible themselves.

An admissible matrix function sequence G 0, , G κ is said to be regular admissible, if

$$\displaystyle{\mathop{N}\limits^{\frown }\!_{i} =\{ 0\}\quad \text{for all}\quad i = 1,\ldots,\kappa.}$$

Then, also the projector functions \(Q_{0},\ldots,Q_{\kappa }\) are called regular admissible.

The numbers \(\;r_{0} =\mathrm{ rank}\,G_{0},\ldots,r_{\kappa } =\mathrm{ rank}\,G_{\kappa }\;\) and \(\;u_{1},\ldots,u_{\kappa }\;\) are named characteristic values of the DAE on \(\mathcal{G}\).

To shorten the wording we often speak simply of admissible projector functions having in mind the admissible matrix function sequence built with these admissible projector functions. Admissible projector functions are always cross-linked with their matrix function sequence. Changing a projector function yields a new matrix function sequence.

We refer to [86] for many useful properties of the admissible matrix function sequences. It always holds that

$$\displaystyle{ r_{0} \leq \cdots \leq r_{\kappa -1} \leq r_{\kappa }. }$$

The notion of characteristic values makes sense, since these values are independent of the special choice of admissible projector functions and invariant under regular transformations.

In the case of a linear constant coefficient DAE, the construct simplifies to a sequence of matrices. In particular, the second term in the definition of B i disappears. It is long-known that a pair {E, F} of m × m matrices E, F is regular with Kronecker index μ exactly if an admissible sequence of matrices starting with \(G_{0} = AD = E\), B 0: = F yields

$$\displaystyle{ r_{0} \leq \cdots \leq r_{\mu -1} <r_{\mu } = m. }$$
(6.6)

Thereby, neither the factorization nor the special choice of admissible projectors matter. The characteristic values describe the structure of the Weierstraß–Kronecker form : we have \(l =\sum _{ j=0}^{\mu -1}(m - r_{j})\) and the nilpotent part N contains altogether \(s = m - r_{0}\) Jordan blocks, among them \(r_{i} - r_{i-1}\) Jordan blocks of order i, i = 1, , μ, see [86, Corollary 1.32].

For linear DAEs with time-varying coefficients, the term (⋅ )′ in (6.5) means the derivative in time, and all matrix functions are functions in time. In general, the term (⋅ )′ in (6.5) stands for the total derivative in jet variables and then the matrix function G i depends on the basic variables \((x,t) \in \mathcal{G}\) and, additionally, on the jet variables \(x^{1},\ldots,x^{i+1} \in \mathbb{R}^{m}\). Owing to the total derivative \((D\varPi _{i}D^{-})'\) the new variable \(x^{i+2} \in \mathbb{R}^{m}\) comes in at this level, see [86, Sect. 3.2].

Owing to the constant-rank conditions, the terms \(D\varPi _{i}D^{-}\) are basically continuous. It may happen, for making these terms continuously differentiable, that the data function f must satisfy additional smoothness requirements. A precise description of this smoothness is much too involved and an overall sufficient condition, say \(f \in \mathcal{C}^{m}\), is much too superficial. To indicate that there might be additional smoothness demands we restrict ourselves to the wording f is sufficiently smooth.

The next definition ties regularity to the inequalities (6.6) and so generalizes regularity of matrix pencils for time-varying linear DAEs as well as for nonlinear DAEs. We emphasize that regularity is supported by several constant-rank conditions.

Definition 6.2

Let the DAE (6.1) have a properly involved derivative. Let \(\mathcal{G}\subseteq \mathcal{D}_{f} \times \mathcal{I}_{f}\) be an open, connected subset. The DAE (6.1) is said to be

  1. (1)

    regular on \(\mathcal{G}\) with tractability index 0, if r 0 = m,

  2. (2)

    regular on \(\mathcal{G}\) with tractability index μ, if an admissible matrix function sequence exists such that (6.6) is valid on \(\mathcal{G}\),

  3. (3)

    regular on \(\mathcal{G}\), if it is, on \(\mathcal{G}\), regular with any index (i.e., case (1) or (2) applies).

The open connected subset \(\mathcal{G}\) is called a regularity region or regularity domain.

A point \((\bar{x},\bar{t}) \in \mathcal{D}_{f} \times \mathcal{I}_{f}\) is a regular point if there is a regularity region \(\mathcal{G}\ni (\bar{x},\bar{t})\).

If \(\mathcal{D}\subseteq \mathcal{D}_{f}\) is an open subset and \(\mathcal{I}\subseteq \mathcal{I}_{f}\) is a compact subinterval, then the DAE (6.1) is said to be regular on \(\mathcal{D}\times \mathcal{I}\) if there is a regularity region \(\mathcal{G}\) such that \(\mathcal{D}\times \mathcal{I}\subset \mathcal{G}\).

Example 6.1 (Regularity Regions)

We write the DAE

$$\displaystyle{ \begin{array}{rcl} x'_{1}(t) + x_{1}(t)& =&0, \\ x_{2}(t)x'_{2}(t) - x_{3}(t)& =&0, \\ x_{1}(t)^{2} + x_{2}(t)^{2} - 1 -\gamma (t)& =&0, \end{array} }$$

in the form (6.1), with \(n = 2,\;m = k = 3\),

$$\displaystyle{ \begin{array}{c} f(y,x,t) = \left [\begin{array}{*{10}c} y_{1} + x_{1} \\ x_{2}y_{2} - x_{3} \\ x_{1}^{2} + x_{2}^{2} -\gamma (t) - 1 \end{array} \right ],\quad f_{y}(y,x,t) = \left [\begin{array}{*{10}c} 1& 0\\ 0 &x_{ 2} \\ 0& 0 \end{array} \right ], \\ D(t) = \left [\begin{array}{*{10}c} 1&0&0\\ 0 &1 &0 \end{array} \right ],\end{array} }$$

for \(y \in \mathbb{R}^{2}\), \(x \in \mathcal{D}_{f} = \mathbb{R}^{3}\), \(t \in \mathcal{I}_{f} = \mathbb{R}\).

The derivative is properly involved on the open subsets \(\mathbb{R}^{2} \times \mathcal{G}_{+}\) and \(\mathbb{R}^{2} \times \mathcal{G}_{-}\), \(\;\mathcal{G}_{+}:= \{x \in \mathbb{R}^{3}: x_{2}> 0\} \times \mathcal{I}_{f}\), \(\;\mathcal{G}_{-}:= \{x \in \mathbb{R}^{3}: x_{2} <0\} \times \mathcal{I}_{f}\). We have there

$$\displaystyle{ G_{0} = AD = \left [\begin{array}{*{10}c} 1& 0 &0\\ 0 &x_{ 2} & 0\\ 0 & 0 &0 \end{array} \right ],\quad B_{0} = \left [\begin{array}{*{10}c} 1 & 0 & 0 \\ 0 & x_{2}^{1} & -1 \\ 2x_{1} & 2x_{2} & 0. \end{array} \right ]. }$$

Letting

$$\displaystyle{ Q_{0} = \left [\begin{array}{*{10}c} 0&0&0\\ 0 &0 &0 \\ 0&0&1 \end{array} \right ],\quad \text{ yields }\quad G_{1} = \left [\begin{array}{*{10}c} 1& 0 & 0\\ 0 &2x_{ 2} & -1\\ 0 & 0 & 0 \end{array} \right ]. }$$

G 1 is singular but has constant rank. Since \(N_{0} \cap N_{1} =\{ 0\}\) we find a projector function Q 1 such that \(N_{0} \subseteq \ker Q_{1}\). We choose

$$\displaystyle{ Q_{1} = \left [\begin{array}{*{10}c} 0& 0 &0\\ 0 & 1 &0 \\ 0& \frac{1} {x_{2}} & 0 \end{array} \right ],\ P_{1} = \left [\begin{array}{*{10}c} 1& 0 &0\\ 0 & 0 &0 \\ 0&-\frac{1} {x_{2}} & 1 \end{array} \right ],\ \varPi _{1} = \left [\begin{array}{*{10}c} 1&0&0\\ 0 &0 &0 \\ 0&0&0 \end{array} \right ],\ D\varPi _{1}D^{-} = \left [\begin{array}{*{10}c} 1&0 \\ 0&0 \end{array} \right ], }$$

and obtain \(B_{1} = B_{0}P_{0}Q_{1}\), and then

$$\displaystyle{ G_{2} = \left [\begin{array}{*{10}c} 1& 0 & 0 \\ 0&2x_{2} + x_{2}^{1} & -1 \\ 0& 2x_{2} & 0 \end{array} \right ]. }$$

The matrix \(G_{2} = G_{2}(x^{1},x,t)\) is nonsingular for all arguments (x 1, x, t) with x 2 ≠ 0. The admissible matrix function sequence terminates at this level. The open connected subsets \(\mathcal{G}_{+}\) and \(\mathcal{G}_{-}\) are regularity regions, here both with characteristics r 0 = 2, r 1 = 2, r 2 = 3, and tractability index μ = 2. □ 

For regular DAEs, all intersections \(\mathop{N}\limits^{\frown }\!_{i}\) are trivial ones, thus u i  = 0, i ≥ 1. Namely, because of the inclusions

$$\displaystyle{\mathop{N}\limits^{\frown }\!_{i} \subseteq N_{i} \cap N_{i+1} \subseteq N_{i+1} \cap N_{i+2} \subseteq \ldots \subseteq N_{\mu -1} \cap N_{\mu },}$$

for reaching a nonsingular G μ , which means N μ  = { 0}, it is necessary to have \(\mathop{N}\limits^{\frown }\!_{i} = \{0\}\), i ≥ 1. This is a useful condition for checking regularity in practice.

Observe that each open connected subset of a regularity region is again a regularity region. A regularity region consist of regular points having uniform characteristics. The union of regularity regions is, if it is connected, a regularity region, too. Further, the nonempty intersection of two regularity regions is also a regularity region. Only regularity regions with uniform characteristics may yield nonempty intersections. Maximal regularity regions are then bordered by so-called critical points. Solutions may cross the borders of maximal regularity regions and undergo there bifurcations etc., see examples in [82, 86, 95]. No doubt, much further research is needed to elucidate these phenomena.

1.1.2 The Structure of Linear DAEs

The general DAE (6.1) captures linear DAEs

$$\displaystyle{ A(t)(Dx)'(t) + B(t)x(t) - q(t) = 0 }$$
(6.7)

as \(f(y,x,t):= A(t)y + B(t)x - q(t),\;t \in \mathcal{I}_{f}\). Now, admissible matrix function sequences depend only on time t; and hence, we speak of regularity intervals instead of regions. A regularity interval is open by definition. We say that the linear DAE with properly leading term is regular on the compact interval \([t_{a},t_{e}]\), if there is an accommodating regularity interval, or equivalently, if all points of \([t_{a},t_{e}]\) are regular.

If the linear DAE is regular on the interval \(\mathcal{I}\), then it is also regular on each subinterval of \(\mathcal{I}\) with the same characteristics. This sounds a triviality; however, there is a continuing profound debate about some related questions, cf. [96, Sect. 4.4].

If the linear DAE (6.7) is regular on the interval \(\mathcal{I}\), then (see [86, Sect. 2.4]) it can be decoupled by admissible projector functions into an IERODE

$$\displaystyle{ u' - (D\varPi _{\mu -1}D^{-})'u + D\varPi _{\mu -1}G_{\mu }^{-1}B_{\mu }D^{-}u = D\varPi _{\mu -1}G_{\mu }^{-1}q }$$
(6.8)

and a triangular subsystem of several equations including differentiations

$$\displaystyle\begin{array}{rcl} \left [\begin{array}{cccc} 0&\mathcal{N}_{01} & \cdots & \mathcal{N}_{0,\mu -1} \\ & 0 & \ddots & \vdots\\ & & \ddots &\mathcal{N}_{ \mu -2,\mu -1} \\ & & & 0 \end{array} \right ]\;\;\left [\begin{array}{c} 0 \\ (Dv_{1})'\\ \vdots \\ (Dv_{\mu -1})' \end{array} \right ]& & \\ +\left [\begin{array}{cccc} I &\mathcal{M}_{01} & \cdots & \mathcal{M}_{0,\mu -1} \\ & I & \ddots & \vdots\\ & & \ddots &\mathcal{M}_{ \mu -2,\mu -1} \\ & & & I \end{array} \right ]& \left [\begin{array}{c} v_{0} \\ v_{1}\\ \vdots \\ v_{\mu -1} \end{array} \right ] + \left [\begin{array}{c} \mathcal{H}_{0} \\ \mathcal{H}_{1}\\ \vdots \\ \mathcal{H}_{\mu -1} \end{array} \right ]D^{-}u = \left [\begin{array}{c} \mathcal{L}_{0} \\ \mathcal{L}_{1}\\ \vdots \\ \mathcal{L}_{\mu -1} \end{array} \right ]q.&{}\end{array}$$
(6.9)

The subspace im D Π μ−1 is an invariant subspace for the IERODE (6.8).

This structural decoupling is associated with the decomposition

$$\displaystyle{x = D^{-}u + v_{ 0} + v_{1} + \cdots + v_{\mu -1}.}$$

The coefficients are continuous and explicitly given in terms of an admissible matrix function sequence as

$$\displaystyle\begin{array}{rcl} \mathcal{N}_{01}&:=& -Q_{0}Q_{1}D^{-} {}\\ \mathcal{N}_{0j}&:=& -Q_{0}P_{1}\cdots P_{j-1}Q_{j}D^{-},\qquad \qquad \qquad \quad j = 2,\ldots,\mu -1, {}\\ \mathcal{N}_{i,i+1}&:=& -\varPi _{i-1}Q_{i}Q_{i+1}D^{-}, {}\\ \mathcal{N}_{ij}&:=& -\varPi _{i-1}Q_{i}P_{i+1}\cdots P_{j-1}Q_{j}D^{-},\qquad \quad \quad j = i + 2,\ldots,\mu -1,\;i = 1,\ldots,\mu -2, {}\\ \mathcal{M}_{0j}&:=& Q_{0}P_{1}\cdots P_{\mu -1}\mathcal{M}_{j}D\varPi _{j-1}Q_{j},\qquad \quad \quad j = 1,\ldots,\mu -1, {}\\ \mathcal{M}_{ij}&:=& \varPi _{i-1}Q_{i}P_{i+1}\cdots P_{\mu -1}\mathcal{M}_{j}D\varPi _{j-1}Q_{j},\quad j = i + 1,\ldots,\mu -1,\;i = 1,\ldots,\mu -2, {}\\ \mathcal{L}_{0}&:=& Q_{0}P_{1}\cdots P_{\mu -1}G_{\mu }^{-1}, {}\\ \mathcal{L}_{i}&:=& \varPi _{i-1}Q_{i}P_{i+1}\cdots P_{\mu -1}G_{\mu }^{-1},\qquad \quad \qquad i = 1,\ldots,\mu -2, {}\\ \mathcal{L}_{\mu -1}&:=& \varPi _{\mu -2}Q_{\mu -1}G_{\mu }^{-1}, {}\\ \mathcal{H}_{0}&:=& Q_{0}P_{1}\cdots P_{\mu -1}\mathcal{K}\varPi _{\mu -1}, {}\\ \mathcal{H}_{i}&:=& \varPi _{i-1}Q_{i}P_{i+1}\cdots P_{\mu -1}\mathcal{K}\varPi _{\mu -1},\qquad \quad i = 1,\ldots,\mu -2, {}\\ \mathcal{H}_{\mu -1}&:=& \varPi _{\mu -2}Q_{\mu -1}\mathcal{K}\varPi _{\mu -1}, {}\\ \end{array}$$

with

$$\displaystyle\begin{array}{rcl} \mathcal{K}:= (I -\varPi _{\mu -1})G_{\mu }^{-1}B_{\mu -1}\varPi _{\mu -1} +\sum _{ l=1}^{\mu -1}(I -\varPi _{ l-1})(P_{l} - Q_{l})(D\varPi _{l}D^{-})'D\varPi _{\mu -1},& & {}\\ \end{array}$$
$$\displaystyle\begin{array}{rcl} \mathcal{M}_{j}:=\sum _{ k=0}^{j-1}(I -\varPi _{ k})\{P_{k}D^{-}(D\varPi _{ k}D^{-})'& -& Q_{ k+1}D^{-}(D\varPi _{ k+1}D^{-})'\}D\varPi _{ j-1}Q_{l}D^{-}, {}\\ l& =& 1,\ldots,\mu -1. {}\\ \end{array}$$

The IERODE is always uncoupled from the second subsystem, but the latter is tied to the IERODE (6.8) if among the coefficients \(\mathcal{H}_{0},\ldots,\mathcal{H}_{\mu -1}\) there is at least one which does not vanish. One speaks about a fine decoupling, if \(\mathcal{H}_{1} = \cdots = \mathcal{H}_{\mu -1} = 0\), and about a complete decoupling, if \(\mathcal{H}_{0} = 0\), additionally. A complete decoupling is given, exactly if the coefficient \(\mathcal{K}\) vanishes identically.

If the DAE (6.7) is regular and the original data are sufficiently smooth, then the DAE (6.7) is called fine. Fine DAEs always possess fine and complete decouplings, see [86, Sect. 2.4.3] for the constructive proof. The coefficients of the IERODE as well as the so-called canonical projector function \(\varPi _{can} = (I -\mathcal{H}_{0})\varPi _{\mu -1}\) are independent of the special choice of the fine decoupling projector functions.

It is noteworthy that, if \(Q_{0},\ldots,Q_{\mu -1}\) generate a complete decoupling for a constant coefficient DAE \(Ex'(t) + Fx(t) = 0\), then Π μ−1 is the spectral projector of the matrix pencil {E, F}. In this way, the projector function Π μ−1 associated with a complete decoupling of a fine time-varying DAE represents the generalization of the spectral projector.

1.1.3 Linearizations

Given is now a reference function \(x_{{\ast}}\in \mathcal{C}_{D}^{1}(\mathcal{I}_{{\ast}}, \mathbb{R}^{m})\) on an individual interval \(\mathcal{I}_{{\ast}}\subseteq \mathcal{I}_{f}\), whose values belong to \(\mathcal{D}_{f}\). For each such reference function (here not necessarily a solution!) we may consider the linearization of the (6.1) along x , that is, the linearized DAE

$$\displaystyle{ A_{{\ast}}(t)(Dx)'(t) + B_{{\ast}}(t)x(t) = q(t),\quad t \in \mathcal{I}_{{\ast}}, }$$
(6.10)

with coefficients

$$\displaystyle{ A_{{\ast}}(t):= f_{y}((Dx_{{\ast}})'(t),x_{{\ast}}(t),t),\quad B_{{\ast}}(t):= f_{x}((Dx_{{\ast}})'(t),x_{{\ast}}(t),t),\quad t \in \mathcal{I}_{{\ast}}. }$$

The linear DAE (6.10) inherits from the nonlinear DAE (6.1) the properly stated leading term.

We denote by \(\mathcal{C}_{ref}^{m}(\mathcal{G})\) the set of all \(\mathcal{C}^{m}\) functions x , defined on individual intervals \(\mathcal{I}_{x_{{\ast}}}\), and with graph in \(\mathcal{G}\), that is, \((x_{{\ast}}(t),t) \in \mathcal{G}\) for \(t \in \mathcal{I}_{x_{{\ast}}}\). Clearly, then we also have \(x_{{\ast}}\in \mathcal{C}_{D}^{1}(\mathcal{I}_{x_{{\ast}}}, \mathbb{R}^{m})\). By the smoothness of the reference functions x and the function f we ensure that also the coefficients A and B are sufficiently smooth for regularity.

Next we adapt the necessary and sufficient regularity condition from [86, Theorem 3.33] to our somewhat simpler situation.

Theorem 6.1

Let the DAE (6.1) have a properly involved derivative and let f be sufficiently smooth. Let \(\mathcal{G}\subseteq \mathcal{D}_{f} \times \mathcal{I}_{f}\) be an open connected set. Then the following statements are valid:

  1. (1)

    The DAE (6.1) is regular on \(\mathcal{G}\) if the linearized DAE (6.10) along each arbitrary reference function \(x_{{\ast}}\in \mathcal{C}_{ref}^{m}(\mathcal{G})\) is regular, and vice versa.

  2. (2)

    If the DAE (6.1) is regular on \(\mathcal{G}\) with tractability index μ and characteristic values \(r_{0} \leq \cdots \leq r_{\mu -1} <r_{\mu } = m\) , then all linearized DAEs (6.10) along reference functions \(x_{{\ast}}\in \mathcal{C}_{ref}^{m}(\mathcal{G})\) are regular with uniform index μ and characteristics \(r_{0} \leq \cdots \leq r_{\mu -1} <r_{\mu } = m\) .

  3. (3)

    If all linearized DAEs (6.10) along reference functions \(x_{{\ast}}\in \mathcal{C}_{ref}^{m}(\mathcal{G})\) are regular, then they have uniform index and characteristics, and the nonlinear DAE (6.1) is also regular on \(\mathcal{G}\) , with the same index and characteristics.

Corollary 6.2

Let the DAE (6.1) have a properly involved derivative and let f be sufficiently smooth. Let \(\mathcal{D}\subseteq \mathcal{D}_{f}\) be an open connected set and \(\mathcal{I}\subset \mathcal{I}_{f}\) be a compact interval. Then the following statements are valid:

  1. (1)

    The DAE (6.1) is regular on \(\mathcal{D}\times \mathcal{I}\) if the linearized DAE (6.10) along each arbitrary reference function \(x_{{\ast}}\in \mathcal{C}^{m}(\mathcal{I}, \mathbb{R}^{m})\) with values in \(\mathcal{D}\) is regular, and vice versa.

  2. (2)

    If the DAE (6.1) is regular on \(\mathcal{D}\times \mathcal{I}\) with tractability index μ and characteristic values \(r_{0} \leq \cdots \leq r_{\mu -1} <r_{\mu } = m\) , then all linearized DAEs (6.10) along reference functions \(x_{{\ast}}\in \mathcal{C}^{m}(\mathcal{I}, \mathbb{R}^{m})\) with values in \(\mathcal{D}\) are regular with uniform index μ and characteristics \(r_{0} \leq \cdots \leq r_{\mu -1} <r_{\mu } = m\) .

  3. (3)

    If all linearized DAEs (6.10) along reference functions \(x_{{\ast}}\in \mathcal{C}^{m}(\mathcal{I}, \mathbb{R}^{m})\) with values in \(\mathcal{D}\) are regular, then they have uniform index and characteristics, and the nonlinear DAE (6.1) is also regular on \(\mathcal{D}\times \mathcal{I}\) , with the same index and characteristics.

Proof

Statement (1) is a consequence of Statements (2) and (3).

Statement (2) follows from the construction of the admissible matrix function sequences. Namely, for each \(x_{{\ast}}\in \mathcal{C}^{m}(\mathcal{I}, \mathbb{R}^{m})\), with values in \(\mathcal{D}\), we have

$$\displaystyle\begin{array}{rcl} G_{0}(x_{{\ast}}'(t),x_{{\ast}}(t),t)& =:& G_{{\ast}\;0}(t), {}\\ B_{i-1}(x_{{\ast}}^{(i+1)}(t),\cdots \,,x_{ {\ast}}'(t),x_{{\ast}}(t),t)& =:& B_{{\ast}\;i-1}(t), {}\\ G_{i}(x_{{\ast}}^{(i+1)}(t),\cdots \,,x_{ {\ast}}'(t),x_{{\ast}}(t),t)& =:& G_{{\ast}\;i}(t),\;t \in \mathcal{I},\quad i = 1,\ldots,\mu, {}\\ \end{array}$$

which represents an admissible matrix function sequence for the linearized along x DAE.

Statement (3) is proved along the lines of [86, Theorem 3.33 ] by means of so-called widely orthogonal projector functions. The proof given in [86] also works if one supposes solely compact individual intervals \(\mathcal{I}_{x_{{\ast}}}\).

By Lemma 6.3 below, each reference function given on an individual compact interval can be extended to belong to \(x_{{\ast}}\in \mathcal{C}^{m}(\mathcal{I}, \mathbb{R}^{m})\), with values in \(\mathcal{D}\). □ 

The next assertion is proved in [96].

Lemma 6.3

Let \(\mathcal{D}\subseteq \mathbb{R}^{m}\) be an open set and \(\mathcal{I}\subset \mathbb{R}\) be a compact interval. Let \(\mathcal{I}_{{\ast}}\subset \mathcal{I}\) be a compact subinterval and \(s \in \mathbb{N}\) .

Then, for each function \(x_{{\ast}}\in \mathcal{C}^{s}(\mathcal{I}_{{\ast}}, \mathbb{R}^{m})\) , with values in \(\mathcal{D}\) , there is an extension \(\hat{x}_{{\ast}}\in \mathcal{C}^{s}(\mathcal{I}, \mathbb{R}^{m})\) , with values in \(\mathcal{D}\) .

1.1.4 Linear Differential-Algebraic Operators

Let the linear DAE (6.7) be regular with tractability index \(\mu \in \mathbb{N}\) on the interval \(\mathcal{I} = [a,b]\). The function space

$$\displaystyle{ \mathcal{C}_{D}^{1}(\mathcal{I}, \mathbb{R}^{m}) =\{ x \in \mathcal{C}(\mathcal{I}, \mathbb{R}^{m}): Dx \in \mathcal{C}^{1}(\mathcal{I}, \mathbb{R}^{n})\} }$$

equipped with the norm \(\|x\|_{\mathcal{C}_{D}^{1}}:=\| x\|_{\infty } +\| (Dx)'\|_{\infty }\) is a Banach space. We consider the regular linear differential-algebraic operator (cf. [96])

$$\displaystyle{ Tx:= A(Dx)' + Bx,\quad x \in \mathcal{C}_{D}^{1}(\mathcal{I}, \mathbb{R}^{m}), }$$

and, supposing accurately stated boundary conditions in the sense of Definition 2.3, the composed operator

$$\displaystyle{ \mathcal{T} x:= (\,Tx,\,G_{a}x(a) + G_{b}x(b)\,),\quad x \in \mathcal{C}_{D}^{1}(\mathcal{I}, \mathbb{R}^{m}), }$$

so that the equations Tx = q and \(\mathcal{T} x = (q,\gamma )\) represent the DAE and the BVP, respectively.

We consider different image spaces Y and \(Y \times \mathbb{R}^{l}\) for the operators T and \(\mathcal{T}\). The natural one is

$$\displaystyle{ Y = \mathcal{C}(\mathcal{I}, \mathbb{R}^{m}). }$$

T and \(\mathcal{T}\) are bounded in this setting:

$$\displaystyle{ \|Tx\|_{\infty }\leq (\|A\|_{\infty }\|(Dx)'\|_{\infty } +\| b\|_{\infty }\|x\|_{\infty }) \leq k\|x\|_{\mathcal{C}_{D}^{1}},\quad x \in \mathcal{C}_{D}^{1}(\mathcal{I}, \mathbb{R}^{m}). }$$

The operator T is surjective exactly if the index μ equals one. Otherwise im T is a proper nonclosed subset in \(\mathcal{C}(\mathcal{I}, \mathbb{R}^{m})\), see [86, Sect. 3.9.1], also Appendix 6.1.2. More precisely, one obtains

$$\displaystyle\begin{array}{rcl} \mathrm{im}\,T& =& \{q \in \mathcal{C}(\mathcal{I}, \mathbb{R}^{m}): v_{\mu -1}:= \mathcal{L}_{\mu -1}q,\;Dv_{\mu -1} \in \mathcal{C}^{1}(\mathcal{I}, \mathbb{R}^{n}),\;\text{ for }\;j =\mu -2,\ldots,1: {}\\ & & v_{j}:= \mathcal{L}_{j}q +\sum _{ i=j+1}^{\mu -1}\mathcal{M}_{ j,i}v_{i} +\sum _{ i=j+1}^{\mu -1}\mathcal{N}_{ j,i}(Dv_{i})',\;Dv_{j} \in \mathcal{C}^{1}(\mathcal{I}, \mathbb{R}^{n})\} =: \mathcal{C}^{\mathrm{ind}\,\mu }(\mathcal{I}, \mathbb{R}^{m}).{}\\ \end{array}$$

If μ = 1, then \(\mathcal{T}\) acts bijectively between Banach spaces so that the inverse \(\mathcal{T}^{-1}\) is also bounded and the BVP \(\mathcal{T} x = (q,\gamma )\) is well-posed.

If μ > 1, then the BVP \(\mathcal{T} x = (q,\gamma )\) is essentially ill-posed in this natural setting because of the nonclosed image of T.

Let μ > 1. In an advanced setting we choose

$$\displaystyle{ Y = \mathcal{C}^{\mathrm{ind}\,\mu }(\mathcal{I}, \mathbb{R}^{m}) }$$

and by introducing the norm \(\|q\|_{\mathrm{ind}\,\,\mu }:=\| q\|_{\infty } +\| (Dv_{\mu -1})'\|_{\infty } + \cdots +\| (Dv_{1})'\|_{\infty }\) we obtain again a Banach space. Regarding the structure of the DAE (cf. Sect. 6.1.2) one knows the operators t and \(\mathcal{T}\) to be bounded again. Namely, we derive for each arbitrary \(x \in \mathcal{C}_{D}^{1}(\mathcal{I}, \mathbb{R}^{m})\) that

$$\displaystyle{ \|Tx\|_{\mathrm{ind}\,\,\mu }:=\| Tx\|_{\infty } +\| (D\varPi _{\mu -2}Q_{\mu -1}x)'\|_{\infty } + \cdots +\| (D\varPi _{0}Q_{1}x)'\|_{\infty }. }$$

Taking into account that

$$\displaystyle{ (D\varPi _{\mu -2}Q_{\mu -1}x)' = (D\varPi _{\mu -2}Q_{\mu -1}D^{-})'Dx + D\varPi _{\mu -2}Q_{\mu -1}D^{-}(Dx)' }$$

etc. one achieves the required inequality \(\|Tx\|_{\mathrm{ind}\,\,\mu } \leq k_{\mathrm{ind}\,\,\mu }\|x\|_{\mathcal{C}_{D}^{1}}\).

In this advanced setting, as a bounded bijection acting in Banach spaces, \(\mathcal{T}\) has a bounded inverse and the BVP is well-posed. This sounds fine, but it is quite illusory. The advanced image space \(\mathcal{C}^{\mathrm{ind}\,\mu }(\mathcal{I}, \mathbb{R}^{m})\) as well as its norm \(\|.\|_{\mathrm{ind}\,\,\mu }\) strongly depend on the special coefficients A, D, B. To describe them, one has to be aware of the full special structure of the given DAE. Except for the index-2 case, there seems to be no way to practice this formal well-posedness.

Furthermore, the higher the index the stronger the topology given by the norm \(\|.\|_{\mathrm{ind}\,\,\mu }\), see [86, Sect. 3.9.1], [96, Sect. 2]. It seems to be impossible to capture errors in practical computational procedures using these norms.

1.2 List of Symbols and Abbreviations

\(\mathcal{L}(X,Y )\)

Set of linear operators from X to Y

\(\mathcal{L}(X)\)

\(= \mathcal{L}(X,X)\)

\(\mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{n})\)

is identified with \(\mathbb{R}^{n\times m}\)

K

Transposed matrix

K

Generalized inverse

K +

Orthogonal generalized (Moore–Penrose) inverse

dom K

Definition domain of the map K

\(\ker K\)

Nullspace (kernel) of the operator K

im K

Image (range) of the operator K

ind {E, F}

Kronecker index of the matrix pair {E, F}

\(\langle \cdot,\cdot \rangle\)

Scalar product in \(\mathbb{R}^{m}\)

(⋅ , ⋅ )

Scalar product in function spaces

 | ⋅ | 

Vector and matrix norms

\(\|\cdot \|\)

Norms on function spaces, operator norms

DAE

Differential-algebraic equation

ODE

Ordinary differential equation

IVP

Initial value problem

BVP

Boundary value problem

IERODE

Inherent explicit ODE

LSS

Least squares solution

TPBVP

Two-point BVP

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lamour, R., März, R., Weinmüller, E. (2015). Boundary-Value Problems for Differential-Algebraic Equations: A Survey. In: Ilchmann, A., Reis, T. (eds) Surveys in Differential-Algebraic Equations III. Differential-Algebraic Equations Forum. Springer, Cham. https://doi.org/10.1007/978-3-319-22428-2_4

Download citation

Publish with us

Policies and ethics