Wood Surface Stability

Chapter

Abstract

Wood surface stability itself is a complex property having far-reaching connections with the general resistance to artificial and environmental influences as a function of time. Any deterioration in the physical and mechanical properties of the surface layer changes in colour fundamentally decrease the utility and aesthetical value of a product. This chapter treats the main environmental influences such as the light irradiation, moisture and temperature changes, and the artificial treatments (steaming, irradiation, hot air) and outdoor weathering. In wood materials, moisture is always present and plays an important role in all environmental and artificial influences. Therefore, moisture exchange with the air and the moisture movement in wood structures are discussed. Hardness and abrasion resistance of wood surfaces are also treated.

References

  1. Agresti, G., Bonifazi, G., Calienno, L., Capobianco, G., Lo Monaco, A., Pelosi, C., Picchio, R., Serranti, S.: Surface investigation of photo-degraded wood by colour monitoring, infrared spectroscopy, and hyperspectral imaging. J. Spectrosc. 1(1), Article number 380536 (2013)Google Scholar
  2. Ayadi, N., Lejeune, F., Charrier, F., Charrier, B., Merlin, A.: Colour stability of heat-treated wood during artificial weathering. Holz als Roh- und Werkstoff 61, 221–226 (2003)Google Scholar
  3. Bak, M., Németh, R., Csordós, D., Tolvaj, L.: Effect of treatment medium on the moisture uptake rate and colour change during natural weathering of heat treated wood, pp. 80–86. In: Conference of COST Action FP0904, Rogla, Slovenia, 16–18 Oct 2014Google Scholar
  4. Bak, M., Németh, R., Tolvaj, L.: The colour change of oil-heat-treated timber during weathering. Óbuda Univ. E-Bull. 3(1), 339–345 (2012)Google Scholar
  5. Béldi, F., Bálint, J.: Einige Sorptionseigenschaften von Zementgebundenen Spanplatten. Acta Facultatis Ligniensis 1, 25–38 (1986)Google Scholar
  6. Béldi, F, Szabó, J.: Forgécslapok páradiffúziós vizsgálata. Experimental investigation of water-vapour diffusion of particle boards, pp. 43–49. EFE Tudományos Közleményei (1979)Google Scholar
  7. Béldi, F., Bálint, J.: Über einigen Sorptionseigenschaften der Akazie. Acta Facultatis Ligniensis, 1, 15–27 (1984)Google Scholar
  8. Burmester, A., Olsen, C.: Verbesserung der Formbeständigkeit von Buchenholz durch Tränkung mit Diisocyanat. Holz als Roh- und Werkstoff, S. 84–89 (1971)Google Scholar
  9. Calienno, L., Lo Monaco, A., Pelosi, C., Picchio, R.: Colour and chemical changes on photodegraded beech wood with or without red heartwood. Wood Sci. Technol. 48, 1167–1180 (2014)CrossRefGoogle Scholar
  10. Carslaw, H., Jäger, J.: Conduction of Heat in Solids. Oxford University Press, New York (1959)Google Scholar
  11. Chang, T.C., Chang, H.T., Wu, C.L., Chang, S.T.: Influences of extractives on the photodegradation of wood. Polym. Degrad. Stab. 95, 516–521 (2010)CrossRefGoogle Scholar
  12. Christensen, G., Kelsey, K.: Die Geschwindigkeit der Wasserdampfsorption durch Holz. Holz als Roh- und Werkstoff, S.178–188 (1959)Google Scholar
  13. Cloutier, A., Fortin, Y.: A model of moisture movement in wood. Wood Sci. Technol. 27, 95–114 (1993)Google Scholar
  14. Cloutier, A., Fortin, Y.: Moisture content—water potential relationship from saturated to dry conditions. Wood Sci. Technol. 25, 263–280 (1991)Google Scholar
  15. Csanády, E., Magoss, E.: Mechanics of Wood Machining. Springer, Berlin (2013)Google Scholar
  16. Fowkes, F.M.: Acid-base interactions in polymer adhesion. In: Mittal, K.L. (ed.) Physicochemical Aspects of Polymer Surfaces, vol. 2, pp. 583–603. Plenum Press, NY (1983)Google Scholar
  17. Gardner, D.J.: Application of the Lifshitz—van der Waals acid-base approach to determine wood surface tension components. Wood Fiber Sci. 28(4), 422–428 (1996)Google Scholar
  18. Gardner, D.J., Generella, N.C., Gunells, D.W., Wolcott, M.P.: Dynamic wettability of wood. Langmuir 7, 2498–2502 (1991)CrossRefGoogle Scholar
  19. Garrett, H.: Contact angles and their significance for adhesion, pp. 19–41. In: Proceedings of Northampton College of Advanced Technology (1964)Google Scholar
  20. Gindl, M., Sin, G., Gindl, W., Reiterer, A., Tschegg, S.: A comparison of different methods to calculate the surface free energy of wood using contact angle measurement. Colloids Surf. A 181, 279–287 (2001)CrossRefGoogle Scholar
  21. Good, R.J.: Contact angle, wetting, and adhesion: a critical review. In: Mittal, K.L. (ed.) Contact Angle, Wettability and Adhesion, pp. 3–36. VSP, Utrecht (1993)Google Scholar
  22. Hill, C.A.S.: Wood Modification: Chemical, Thermal and Other Processes. Wiley, London (2006)Google Scholar
  23. Huang, A., Zhou, Q., Liu, J., Fei, B., Sun, S.: Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy. J. Mol. Struct. 883–884, 160–166 (2008)CrossRefGoogle Scholar
  24. Huang, X., Kocaefe, D., Kocaefe, Y., Boluk, Y., Pichette, A.: Study of the degradation behavior of heat-treated jack pine (Pinus banksiana) under artificial sunlight irradiation. Polym. Degrad. Stab. 97, 1197–1214 (2012)CrossRefGoogle Scholar
  25. Huang, X., Kocaefe, D., Kocaefe, Y., Boluk, Y., Krause, C.: Structural analysis of heat-treated birch (Betula papyrifera) surface during artificial weathering. Appl. Surf. Sci. 264, 117–127 (2013)CrossRefGoogle Scholar
  26. Janka, G.: Härteprüfung des Holzes mittels Kugeldruckverfahren. Wien (1912)Google Scholar
  27. Janka, G.: Die Härte der Hölzer, Wien (1915)Google Scholar
  28. Kataoka, Y., Kiguchi, M., Fujiwara, T., Evans, P.D.: The effect of within-species and between-species variation in wood density on the photodegradation depth profiles of sugi (Cryptomeria japonica) and hinoki (Chamaecyparis obtusa). J. Wood Sci. 51, 531–536 (2005)CrossRefGoogle Scholar
  29. Kataoka, Y., Kiguchi, M., Williams, R.S., Evans, P.D.: Violet light causes photodegradation of wood beyond the zone affected by ultraviolet radiation. Holzforschung 61, 23–27 (2007)CrossRefGoogle Scholar
  30. Kubovsky, I., Kacík, F.: Colour and chemical changes of the lime wood surface due to CO2 laser thermal modification. Appl. Surf. Sci. 321, 261–267 (2014)CrossRefGoogle Scholar
  31. Liptáková, E., Kúdela, J.: Analysis of the wood-wetting process. Holzforschung 48, 139–144 (1994)CrossRefGoogle Scholar
  32. Masuda, M.: Why human loves wood grain figure? Extraction of vision-physical characteristics deeply related to impression, pp. 11–23. In: ICWSF Conference, Ljubljana, 5–7 Sept 2001Google Scholar
  33. Matsuo, M., Umemura, K., Kawai, S.: Kinetic analysis of color changes in keyaki (Zelkova serrata) and sugi (Cryptomeria japonica) wood during heat treatment. J. Wood Sci. 60, 12–20 (2014)CrossRefGoogle Scholar
  34. Matsuo, M., Yokoyama, M., Umemura, K., Gril, J., Yano, K., Kawai, S.: Color changes in wood during heating: kinetic analysis by applying a time-temperature superposition method. Appl. Phys. A 99, 47–52 (2010)CrossRefGoogle Scholar
  35. Mitsui, K.: Changes in the properties of light-irradiated wood with heat treatment. Part 2. Effect of light-irradiation time and wavelength. Holz als Roh- und Werkstoff 62, 23–30 (2004)CrossRefGoogle Scholar
  36. Mitsui, K., Tsuchikawa, S.: Low atmospheric temperature dependence on photodegradation of wood. J. Photochem. Photobiol. B 81, 84–88 (2005)CrossRefGoogle Scholar
  37. Mitsui, K., Takada, H., Sugiyama, M., Hasegawa, R.: Changes in the properties of light-irradiated wood with heat treatment. Part 1. Effect of treatment conditions on the change in color. Holzforschung 55, 601–605 (2001)CrossRefGoogle Scholar
  38. Mitsui, K., Murata, A., Tolvaj, L.: Change in the properties of light-irradiated wood with heat treatment. Part 3. Monitoring by DRIFT spectroscopy. Holz als Roh- und Werkstoff 62, 164–168 (2004)CrossRefGoogle Scholar
  39. Mitsui, K., Tolvaj, L., Papp, G., Bohus, J., Szatmári, S., Berkesi, O.: Changes in the properties of light-irradiated wood with heat treatment. Part 4. Application of laser. Wood Res. Slovakia 50, 1–8 (2005)Google Scholar
  40. Müller, U., Rätzsch, M., Schwanninger, M., Steiner, M., Zöbl, H.: Yellowing and IR-changes of spruce wood as result of UV-irradiation. J. Photochem. Photobiol. B 69, 97–105 (2003)CrossRefGoogle Scholar
  41. Nakshabandi, G., Kohnke, H.: Thermal conductivity and diffusivity of soils as related to moisture tension. Agr. Meteorol. 2, 271–279 (1965)Google Scholar
  42. Németh, K.: Rolle des Feuchtigkeitsgehaltes des Holzes in der Hygroskopizität von Polyuretan-Holz-Kompositen. Acta Facultatis Ligniensis Sopron, S. 55–64 (1986)Google Scholar
  43. Pandey, K.K.: Study of the effect of photo-irradiation on the surface chemistry of wood. Polym. Degrad. Stab. 90, 9–20 (2005a)CrossRefGoogle Scholar
  44. Pandey, K.K.: A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polym. Degrad. Stab. 87, 375–379 (2005b)CrossRefGoogle Scholar
  45. Pandey, K.K., Vourinen, T.: Comparative study of photodegradation of wood by a UV laser and a xenon light source. Polym. Degrad. Stab. 93, 2138–2146 (2008)CrossRefGoogle Scholar
  46. Persze, L., Tolvaj, L.: Photodegradation of wood at elevated temperature: colour change. J. Photochem. Photobiol. B: Biol 108, 44–47 (2012)Google Scholar
  47. Popescu, C.M., Popescu, M.C., Vasile, C.: Structural analysis of photodegraded lime wood by means of FT-IR and 2D IR correlation spectroscopy. Int. J. Biol. Macromol. 48(4), 667–675 (2011)CrossRefGoogle Scholar
  48. Popescu, M.-C., Froidevaux, J., Navi, P., Popescu, C.-M.: Structural modification of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy. J. Mol. Struct. 1033, 176–186 (2013)CrossRefGoogle Scholar
  49. Sell, J.: Physikalische Vorgänge in wetterbeanspruchten Holzbauteilen. Holz als Roh- und Werkstoff, S. 259–267 (1985)Google Scholar
  50. Sitkei, G. (ed.).: Faipari műveletek elmélete (Theory of wood processing), pp. 105–141. Szaktudás Kiadó Budapest (1994a)Google Scholar
  51. Sitkei, G.: Non-linear rheological method describing compaction processes. Int. Agrophys. 8, 137–142 (1994b)Google Scholar
  52. Srinivas, K., Pandey, K.: Photodegradation of thermally modified wood. J. Photochem. Photobiol. B 117, 140–145 (2012)CrossRefGoogle Scholar
  53. Stamm, A.: Passage of liquids, vapours and dissolved materials through softwoods. USDA Bull. 929, 1946Google Scholar
  54. Tolvaj, L., Faix, O.: Artificial ageing of wood monitored by DRIFT spectroscopy and CIE L*a*b* color measurements. I. Effect of UV light. Holzforschung 49, 397–404 (1995)CrossRefGoogle Scholar
  55. Tolvaj, L., Mitsui, K.: Surface preparation and direction dependence of DRIFT spectra of wood. Appl. Spectrosc. 58, 1137–1140 (2004)CrossRefGoogle Scholar
  56. Tolvaj, L., Mitsui, K.: Light source dependence of the photodegradation of wood. J. Wood Sci 51, 468–473 (2005)CrossRefGoogle Scholar
  57. Tolvaj, L., Mitsui, K.: Validity limits of Kubelka-Munk theory for DRIFT spectra of photodegraded solid wood. Wood Sci. Technol. 45, 135–146 (2011)CrossRefGoogle Scholar
  58. Tolvaj, L., Varga, D.: Photodegradation of timber of three hardwood species caused by different light sources. Acta Silvatica et Lignaria Hungarica 8, 145–155 (2012)CrossRefGoogle Scholar
  59. Tolvaj, L., Molnar, S., Nemeth, R., Varga, D.: Color modification of black locust depending on the steaming parameters. Wood Res. Slov 55, 81–88 (2010)Google Scholar
  60. Tolvaj, L., Z, Molnar, Nemeth, R.: Photodegradation of wood at elevated temperature: infrared spectroscopic study. J. Photochem. Photobiol. B 121, 32–36 (2013)Google Scholar
  61. Tolvaj, L., Molnar, Zs., Magoss, E.: Measurement of photodegradation-caused roughness of wood using a new optical method. J. Photochem. Photobiol., B 134, 23–26 (2014a)CrossRefGoogle Scholar
  62. Tolvaj, L., Nemeth, R., Pasztory, Z., Bejo, L., Takats, P.: Colour stability of thermally modified wood during short-term photodegradation. Bioresources 9(4), 6644–6651 (2014b)CrossRefGoogle Scholar
  63. Tolvaj, L., Popescu, C.M., Molnar, Zs., Preklet, E.: Dependence of the air relative humidity and temperature on the photodegradation processes of beech and spruce wood species. Bioresources (in print) (2015)Google Scholar
  64. van Genuchten, M.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)Google Scholar
  65. Van Oss, C.J., Chaudhury, M.K., Good, R.J.: Monopolar surfaces. Adv. Colloid Interface Sci. 28, 35–64 (1987)CrossRefGoogle Scholar
  66. Varga, D., van der See, M.E.: Influence of steaming on selected wood properties of four hardwood species. Holz als Roh- ond Werkstoff 66, 11–18 (2008)CrossRefGoogle Scholar
  67. Tolvaj, L., Tsuchikawa, S., Inagaki, T., Varga, D.: Temperature dependence of photodegradation of wood monitored by colour measurement. Wood Sci. Technol. doi:10.1007/s00226-015-0749-1 (in print)
  68. Yildiz, S., Yildiz, U.C., Tomak, E.D.: The effects of natural weathering on the properties of heat-treated alder wood. Bioresources 6(3), 2504–2521 (2011)Google Scholar
  69. Zavarin, E., Jones, S.J., Cool, L.G.: Analysis of solid wood surfaces by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. J. Wood Chem. Technol. 10, 495–513 (1990)CrossRefGoogle Scholar
  70. Лыкoв, A.B., Mиxaйлoв, Ю.: A. Teopия пepeнoca энepгии и вeщecвa Изд. AH. БCCP, Mинcк, 1959. (Theory of energy and mass transfer)Google Scholar
  71. Шyбин, Г.: Физичecкиe ocнoвы и pacчeт пpoceccoв cyшки дpeвecины, pp. 271–279. Лecнaя пpoмышлeннocтъ, Mocквa (Physical background of wood drying) (1965)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Wood EngineeringWest Hungarian UniversitySopronHungary
  2. 2.Department of Physics and ElectrotechnicsWest Hungarian UniversitySopronHungary

Personalised recommendations