Robust Change Detection in the Dependence Structure of Multivariate Time Series



A robust change-point test based on the spatial sign covariance matrix is proposed. A major advantage of the test is its computational simplicity, making it particularly appealing for robust, high-dimensional data analysis. We derive the asymptotic distribution of the test statistic for stationary sequences, which we allow to be near-epoch dependent in probability (P NED) with respect to an α-mixing process. Contrary to the usual L2 near-epoch dependence, this short-range dependence condition requires no moment assumptions, and includes arbitrarily heavy-tailed processes. Further, we give a short review of the spatial sign covariance matrix and compare our test to a similar one based on the sample covariance matrix in a simulation study.


GARCH Near epoch dependence Oja sign covariance matrix Orthogonal invariance Spatial sign covariance matrix Tyler matrix 



This work was supported in part by the Collaborative Research Grant 823 of the German Research Foundation.


  1. Aue, A., Hörmann, S., Horváth, L., Reimherr, M.: Break detection in the covariance structure of multivariate time series models. Ann. Stat. 37(6B), 4046–4087 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bilodeau, M., Brenner, D.: Theory of Multivariate Statistics. Springer Texts in Statistics. Springer, New York (1999)zbMATHGoogle Scholar
  3. Bollerslev, T.: Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model. Rev. Econ. Stat. 72, 498–505 (1990)CrossRefGoogle Scholar
  4. Bücher, A., Kojadinovic, I., Rohmer, T., Segers, J.: Detecting changes in cross-sectional dependence in multivariate time series. J. Multivar. Anal. 132, 111–128 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Croux, C., Dehon, C., Yadine, A.: The k-step spatial sign covariance matrix. Adv. Data Anal. Classif. 4(2–3), 137–150 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. de Jong, R.M., Davidson, J.: Consistency of kernel estimators of heteroscedastic and autocorrelated covariance matrices. Econometrica 68(2), 407–424 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Dehling, H., Vogel, D., Wendler, M., Wied, D.: Testing for changes in the rank correlation of time series. version 1 (2012) [arXiv 1203.4871]Google Scholar
  8. Dümbgen, L., Tyler, D.E.: On the breakdown properties of some multivariate M-functionals. Scand. J. Stat. 32(2), 247–264 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Dürre, A., Vogel, D., Tyler, D.E.: The spatial sign covariance matrix with unknown location. J. Multivar. Anal. 130, 107–117 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Dürre, D., Vogel, D., Fried, R.: Spatial sign correlation. J. Multivar. Anal. 135, 89–105 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Fischer, D., Möttönen, J., Nordhausen, K., Vogel, D.: OjaNP: Multivariate Methods Based on the Oja Median and Related Concepts, 2014. R package version 0.9-8
  12. Frahm, G.: Asymptotic distributions of robust shape matrices and scales. J. Multivar. Anal. 100(7), 1329–1337 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Galeano, P., Peña, D.: Covariance changes detection in multivariate time series. J. Stat. Plann. Inference 137(1), 194–211 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Galeano, P., Wied, D.: Multiple break detection in the correlation structure of random variables. Comput. Stat. Data Anal. 76, 262–282 (2014)MathSciNetCrossRefGoogle Scholar
  15. Gray, R.M.: Toeplitz and circulant matrices: a review. Found. Trends Commun. Inf. Theory 2(3), 155–239 (2006)CrossRefzbMATHGoogle Scholar
  16. Ibragimov, I.A.: Some limit theorems for stationary processes. Theory Probab. Appl. 7, 349–382 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Kojadinovic, I., Quessy, J.F., Rohmer, T.: Testing the constancy of Spearman’s rho in multivariate time series. Ann. Inst. Math. Stat. (2015). doi:  10.1007/s10463-015-0520-2 Google Scholar
  18. Locantore, N., Marron, J., Simpson, D., Tripoli, N., Zhang, J., Cohen, K.: Robust principal component analysis for functional data. Test 8(1), 1–73 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Lopuhaä, H.P., Rousseeuw, P.J.: Breakdown points of affine equivariant estimators of multivariate location and covariance matrices. Ann. Stat. 19(1), 229–248 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Magnus, J.R., Neudecker, H.: Matrix Differential Calculus with Applications in Statistics and Econometrics, 2nd edn. Wiley Series in Probability and Statistics. Wiley, Chichester (1999)zbMATHGoogle Scholar
  21. Magyar, A.F., Tyler, D.E.: The asymptotic efficiency of the spatial median for elliptically symmetric distributions. Sankhya B 73(2), 165–192 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Magyar, A.F., Tyler, D.E.: The asymptotic inadmissibility of the spatial sign covariance matrix for elliptically symmetric distributions. Biometrika 101(3), 673–688 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. Marden, J.I.: Some robust estimates of principal components. Stat. Probab. Lett. 43(4), 349–359 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Ollila, E., Oja, H., Croux, C.: The affine equivariant sign covariance matrix: asymptotic behavior and efficiencies. J. Multivar. Anal. 87(2), 328–355 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Paindaveine, D.: A canonical definition of shape. Stat. Probab. Lett. 78(14), 2240–2247 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Quessy, J.-F., Saïd, M., Favre, A.-C.: Multivariate Kendall’s tau for change-point detection in copulas. Can. J. Stat. 41, 65–82 (2013)CrossRefzbMATHGoogle Scholar
  27. Sirkiä, S., Taskinen, S., Oja, H., Tyler, D.E.: Tests and estimates of shape based on spatial signs and ranks. J. Nonparametric Stat. 21(2), 155–176 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Tukey, J.W.: A survey of sampling from contaminated distributions. In: Olkin, I., Ghurye, S.G., Hoeffding, W., Madow, W.G., Mann, H.B. (eds.) Contributions to Probability and Statistics. Essays in Honor of Harold Hotelling, pp. 448–485. Stanford University Press, Stanford (1960)Google Scholar
  29. Tyler, D.E.: Radial estimates and the test for sphericity. Biometrika 69, 429–436 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Tyler, D.E.: A distribution-free M-estimator of multivariate scatter. Ann. Stat. 15, 234–251 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  31. Tyler, D.E.: A note on multivariate location and scatter statistics for sparse data sets. Stat. Probab. Lett. 80(17-18), 1409–1413 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  32. Vardi, Y., Zhang, C.H.: A modified Weiszfeld algorithm for the Fermat-Weber location problem. Math. Program. Ser. A 90, 559–566 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  33. Visuri, S.: Array and multichannel signal processing using nonparametric statistics. Ph.D. Thesis, Helsinki University of Technology, Helsinki, Finland (2001)Google Scholar
  34. Visuri, S., Koivunen, V., Oja, H.: Sign and rank covariance matrices. J. Stat. Plann. Inference 91(2), 557–575 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  35. Wied, D., Krämer, W., Dehling, H.: Testing for a change in correlation at an unknown point in time using an extended delta method. Econometric Theory 28(3), 570–589 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  36. Wied, D., Dehling, H., van Kampen, M., Vogel, D.: A fluctuation test for constant Spearman’s rho with nuisance-free limit distribution. Comput. Stat. Data Anal. 76 723–736, (2014)CrossRefGoogle Scholar
  37. Wooldridge, J.M., White, H.: Some invariance principles and central limit theorems for dependent heterogeneous processes. Econometric Theory 4, 210–230 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute for Complex Systems and Mathematical BiologyUniversity of AberdeenAberdeenUK
  2. 2.Fakultät StatistikTechnische Universität DortmundDortmundGermany

Personalised recommendations