Skip to main content

A Patient with Follicular Thyroid Cancer and a Painful Bone Metastases at Risk for Pathologic Fracture

  • Chapter
Thyroid Cancer
  • 1945 Accesses

Abstract

Distant metastases are the most important prognostic factor in differentiated thyroid cancer. In particular, bone metastases occur in less than 5 % of patients with thyroid cancer, but they often represent a frequent cause of morbidity, local pain, and neurological symptoms. The median reported overall survival in patients with bone metastases is 2–4 years after diagnosis and treatment, but it can range from 96 % at 10 years in younger patients (<45 years) with 131I-avid lesion without radiological correlate to less than 10 % in older patients with multiple lesions and radiological abnormalities. The treatment of bone metastases is challenging. Small lesions with 131I uptake and not visualized on cross-sectional imaging can be completely treated by radioactive iodine. In case of multiple lesions or large lesions and in case of bone metastases from 131I refractory thyroid cancer, radioactive iodine is not effective, and local treatments are then necessary to avoid local complications, neurological symptoms, and pathological fractures. In some cases, surgery represents the first choice to reduce the tumor burden or to treat spinal compression. In some cases, surgery may not be indicated because of general anesthesia risk, patient comorbidity, or lesion localization. Recently, local treatments such as radiofrequency ablation or cryoablation show comparable results to surgery in terms of efficacy in localized disease, and they allow for lesion stabilization in case of fracture risk when associated to cementoplasty. Furthermore, these treatments are well tolerated, they can be repeated in the same patients, and they are compatible with radioactive iodine treatment or radiotherapy if necessary. They are usually performed before starting systemic treatment such as tyrosine-kinase inhibitors or chemotherapy that typically show low efficacy in treating bone lesions. Thus, the management of thyroid cancer-related bone metastases is complex and requires a multidisciplinary approach with oncologists, surgeons, interventional radiologists, and radiotherapy team collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlumberger M, Challeton C, De Vathaire F, et al. Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma. J Nucl Med. 1996;37(4):598–605.

    CAS  PubMed  Google Scholar 

  2. Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91(8):2892–9.

    Article  CAS  PubMed  Google Scholar 

  3. Schlumberger M, French TUTHYREF Network. Targeted therapy in refractory thyroid cancer. Eur J Cancer. 2011;47 Suppl 3:S328–9.

    Article  PubMed  Google Scholar 

  4. Cooper DS, Doherty GM, Hauguen BR, et al. Revised American thyroid association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19:1167–214.

    Article  PubMed  Google Scholar 

  5. Haissaguerre M, Leboulleux S, Bonichon F, et al. Impact of molecular targeted therapies in patients with bone metastases of differentiated thyroid carcinoma. Poster, 54th American Thryoid Association meeting; 24–27 Oct 2012.

    Google Scholar 

  6. Tubiana M, Haddad E, Schlumberger MJ, et al. External radiotherapy in thyroid cancers. Cancer. 1985;55:2062–71.

    Article  CAS  PubMed  Google Scholar 

  7. Bernier MO, Leenhardt L, Hoang C, et al. Survival and therapeutic modalities in patients with bone metastases of differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2001;86(4):1568–73.

    Article  CAS  PubMed  Google Scholar 

  8. Zettining G, Fueger BJ, Passler C, et al. Long-term follow-up of patients with bone metastases from differentiated thyroid carcinoma—surgery or conventional therapy? Clin Endocrinol. 2002;56:377–82.

    Article  Google Scholar 

  9. Kushchayeva YS, Kushchayev SV, Wexler JA, et al. Current treatment modalities for spinal metastases secondary to thyroid carcinoma. Thyroid. 2014;24:1443–55.

    Article  PubMed  Google Scholar 

  10. Goetz MP, Callstrom MR, Charboneau JW, et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study. J Clin Oncol. 2004;22:300–6.

    Article  PubMed  Google Scholar 

  11. Thanos L, Mylona S, Galani P, et al. Radiofrequency ablation of osseous metastases for the palliation of pain. Skelet Radiol. 2008;37(3):189–94.

    Article  CAS  Google Scholar 

  12. Dupuy DE, Liu D, Hartfeil D, et al. Percutaneous radiofrequency ablation of painful osseous metastases: a multicenter American College of Radiology Imaging Network trial. Cancer. 2010;116:989–97.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Deschamps F, Farouil G, Ternes N, et al. Thermal ablation techniques: a curative treatment of bone metastases in selected patients? Eur Radiol. 2014;8:1971–80.

    Article  Google Scholar 

  14. Monchik JM, Donatini G, Iannuccilli J, Dupuy DE. Radiofrequency ablation and percutaneous ethanol injection treatment for recurrent local and distant well-differentiated thyroid carcinoma. Ann Surg. 2006;244:296–304.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Sugitani I, Fujimoto Y, Yamamoto N. Papillary thyroid carcinoma with distant metastases: survival predictors and the importance of local control. Surgery. 2008;143:35–42.

    Article  PubMed  Google Scholar 

  16. Quan GM, Pointillart V, Palussière J, Bonichon F. Multidisciplinary treatment and survival of patients with vertebral metastases from thyroid carcinoma. Thyroid. 2012;22:125–30.

    Article  PubMed  Google Scholar 

  17. Pittas AG, Adler M, Fazzari M, Tickoo S, Rosai S, Larson SM, Robbins RJ. Bone metastases from thyroid carcinoma: clinical characteristics and prognostic variables in one hundred forty-six patients. Thyroid. 2000;10(3):261–8.

    Article  CAS  PubMed  Google Scholar 

  18. Kushchayeva YS, Kushchayev SV, Carroll NM, et al. Spinal metastases due to thyroid carcinoma: an analysis of 202 patients. Thyroid. 2014;24:1488–500.

    Article  PubMed  Google Scholar 

  19. Wang W, Larson SM, Fazzari M, et al. Prognostic value of [18F] fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab. 2000;85:1107–13.

    CAS  PubMed  Google Scholar 

  20. Wang W, Larson SM, Tuttle RM, et al. Resistance of [18f]-fluorodeoxyglucose-avid metastatic thyroid cancer lesions to treatment with high-dose radioactive iodine. Thyroid. 2001;11:1169–75.

    Article  CAS  PubMed  Google Scholar 

  21. Robbins RJ, Wan Q, Grewal RK, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91:498–505.

    Article  CAS  PubMed  Google Scholar 

  22. Deandreis D, Al Ghuzlan A, Leboulleux S, et al. Histological, immunohistochemical and metabolic (radioiodine and FDG uptake) patterns of metastatic thyroid cancer: do they correlate with patients outcome? Endocr Relat Cancer. 2011;18:159–69.

    Article  CAS  PubMed  Google Scholar 

  23. Robenshtok E, Farooki A, Grewal RK, Tuttle RM. Natural history of small radioiodine-avid bone metastases that have no structural correlate on imaging studies. Endocrine. 2014;47(1):266–72.

    Article  CAS  PubMed  Google Scholar 

  24. Lo SS, Fakiris AJ, Chang EL, et al. Stereotactic body radiation therapy: a novel treatment modality. Nat Rev Clin Oncol. 2010;7:44–54.

    Article  PubMed  Google Scholar 

  25. Smit JW, Vielvoye GJ, Goslings BM. Embolization for vertebral metastases of follicular thyroid carcinoma. J Clin Endocrinol Metab. 2000;85:989–94.

    Article  CAS  PubMed  Google Scholar 

  26. Erinjeri JP, Clark TW. Cryoablation: mechanism of action and devices. J Vasc Interv Radiol. 2010;21 Suppl 8:S187–91.

    Article  PubMed  Google Scholar 

  27. Hong K, Georgiades C. Radiofrequency ablation: mechanism of action and devices. J Vasc Interv Radiol. 2010;21(8 Suppl):S179–86.

    Article  PubMed  Google Scholar 

  28. Rosenthal D, Callstrom MR. Critical review and state of the art in interventional oncology: benign and metastatic disease involving bone. Radiology. 2012;262(3):765–80.

    Article  PubMed  Google Scholar 

  29. Deandreis D, Leboulleux S, Dromain C, et al. Role of FDG-PET/CT in the follow up of lung lesions treated with radiofrequency ablation. Radiology. 2011;258:270–6.

    Article  PubMed  Google Scholar 

  30. Proschek D, Kurth A, Proschek P, et al. Prospective pilot-study of combined bipolar radiofrequency ablation and application of bone cement in bone metastases. Anticancer Res. 2009;29(7):2787–92.

    PubMed  Google Scholar 

  31. Chiras J, Sola-Martinez MT, Weill A, et al. Percutaneous vertebroplasty. Rev Med Intern. 1995;16:854–9.

    Article  CAS  Google Scholar 

  32. Cotten A, Dewatre F, Cortet B, et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology. 1996;20:525–30.

    Article  Google Scholar 

  33. Fourney DR, Schomer DF, Nader R, et al. Percutaneous vertebroplasty and kyphoplasty for painful vertebral body fractures in cancer patients. J Neurosurg. 2003;98:21–30.

    Article  PubMed  Google Scholar 

  34. Deandreis D, Dechamps F, Nascimento C, et al. Role of FDG-PET/CT in the follow up of bone lesions treated with thermal ablation. Abstract CL-NMS-MO3B. Radiological Society of North America (RSNA), Chicago, Dec 2013.

    Google Scholar 

  35. de Baere T, Elias D, Dromain C, et al. Radiofrequency ablation of 100 hepatic metastases with a mean follow-up of more than 1 year. AJR Am J Roentgenol. 2000;175:1619–25.

    Article  PubMed  Google Scholar 

  36. Solbiati L, Livraghi T, Goldberg SN, et al. Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients. Radiology. 2001;221:159–66.

    Article  CAS  PubMed  Google Scholar 

  37. de Baere T, Deschamps F, Tselikas L, et al. GEP-NETS update: interventional radiology: role in the treatment of liver metastases from GEP-NET tumors. Eur J Endocrinol. 2014;172(4):R151–66. pii: EJE-14-0630.

    Article  PubMed  Google Scholar 

  38. Wertenbroek MW, Links TP, Prins TR, et al. Radiofrequency ablation of hepatic metastases from thyroid carcinoma. Thyroid. 2008;18:1105–10.

    Article  PubMed  Google Scholar 

  39. de Baère T, Palussière J, Aupérin A, et al. Midterm local efficacy and survival after radiofrequency ablation of lung tumors with minimum follow-up of 1 year: prospective evaluation. Radiology. 2006;240:587–96.

    Article  PubMed  Google Scholar 

  40. Lencioni R, Crocetti L, Cioni R, et al. Response to radiofrequency ablation of pulmonary tumours: a prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol. 2008;9:621–8.

    Article  PubMed  Google Scholar 

  41. Coleman R, Body JJ, Aapro M, Hadji P, Herrstedt J, ESMO Guidelines Working Group. Bone health in cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol. 2014;25 Suppl 3:iii124–37.

    Article  PubMed  Google Scholar 

  42. Orita Y, Sugitani I, Toda K, Manabe J, Fujimoto Y. Zoledronic acid in the treatment of bone metastases from differentiated thyroid carcinoma. Thyroid. 2011;21(1):31–5.

    Article  CAS  PubMed  Google Scholar 

  43. Fizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377(9768):813–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Proye CA, Dromer DH, Carnaille BM, et al. Is it still worthwhile to treat bone metastasis from differentiated thyroid carcinoma with radioactive iodine? World J Surg. 1992;16:640–6.

    Article  CAS  PubMed  Google Scholar 

  45. Petrich T, Widjaia A, Musholt TJ, et al. Outcome after radioiodine therapy in 107 patients with differentiated thyroid carcinoma and initial bone metastases: side effects and influence of age. Eur J Nucl Med Mol Imaging. 2001;28:203–8.

    Article  CAS  Google Scholar 

  46. Ilgan S, Karacalioglu AO, Pabuscu Y, et al. Iodine-131 treatment and high-resolution CT: results in patients with lung metastases from differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2004;3:825–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Désirée Deandreis MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deandreis, D. (2016). A Patient with Follicular Thyroid Cancer and a Painful Bone Metastases at Risk for Pathologic Fracture. In: Cooper, D., Durante, C. (eds) Thyroid Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-22401-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22401-5_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22400-8

  • Online ISBN: 978-3-319-22401-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics