Advertisement

Management of Large Hydroelectric Reservoirs Surrounding Areas Using GIS and Remote Sensing

  • Anselmo Cardoso de Paiva
  • Cláudio E. C. CampeloEmail author
  • Lucas Caracas de Figueiredo
  • Julio Henrique Rocha
  • Hugo Feitosa de Figueirêdo
  • Cláudio de Souza Baptista
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9265)

Abstract

The management of large water reservoirs is costly. The long perimeter of lakes and the need for an effective control of their surrounding areas prevent the accomplishment of the monitoring task by field engineers. This paper presents a GIS-based corporate IT solution that integrates the management of social, patrimonial and environmental events associated with the land use changes detection methodology. The proposed solution aims to monitor the use and occupation of Permanent Preservation Areas (PPA) around different water reservoirs.

References

  1. 1.
    Alqurashi, F., Kumar, L.: investigating the use of remote sensing and GIS techniques to detect land use and land cover change: a review. Adv. Remote Sens. 2, 193–204 (2013)CrossRefGoogle Scholar
  2. 2.
    Brondizio, E., Moran, E.F., Mausel, P., Wu, Y.: Land use change in the amazon estuary: patterns of caboclo settlement and landscape management. Hum. Ecol. 22(3), 249–278 (1994)CrossRefGoogle Scholar
  3. 3.
    Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., Lambin, E.: Digital change detection methods in ecosystem monitoring: a review. Int. J. Remote Sens. 09(05), 1565–1596 (2004)CrossRefGoogle Scholar
  4. 4.
    Jardini, M.G.M., Jardini, J.A., Magrini, L.C., Crispino, F., Quintanilha, J.A., Albuquerque, R.W., Pinfari, J.C.: Monitoring system for hydroelectric reservoir using high resolution satellite images. In: 2011 IEEE Trondheim PowerTech, pp. 1–7. IEEE (2011). doi: 10.1109/PTC.2011.6019302
  5. 5.
    Kuemmerle, T., Hostert, P., Radeloff, V.C., Perzanowski, K.: Cross-border comparison of land cover and landscape pattern in eastern europe using a hybrid classification technique. Remote Sens. Environ. 103(4), 449–464 (2006)CrossRefGoogle Scholar
  6. 6.
    Mouat, D.A., Mahin, G.G., Lancaster, J.: Remote sensing techniques in the analysis of change detection. Geocarto Int. 8(2), 39–50 (1993)CrossRefGoogle Scholar
  7. 7.
    Pelorosso, R., Leone, A., Boccia, L.: Land cover and land use change in the italian central apennines: a comparison of assessment Methods. Appl. Geogr. 29(1), 35–48 (2009)CrossRefGoogle Scholar
  8. 8.
    Singh, A.: Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10(06), 989–1003 (1989)CrossRefGoogle Scholar
  9. 9.
    Thapa, RB., Murayama, Y.: Urban MappingAccuracy, & Image Classification: A Comparison of Multiple Approaches in Tsukuba City, Japan, Applied Geography, 29(1), 135–144 (2009)CrossRefGoogle Scholar
  10. 10.
    Weihong Z., Yongsheng, Z., Jun, D., Mei, H.: An early warning system for groundwater pollution based on GIS. In: 2011 International Symposium on Water Resource and Environmental Protection, vol. 4, pp. 2773–2776. IEEE (2011). doi: 10.1109/ISWREP.2011.5893454

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Anselmo Cardoso de Paiva
    • 1
  • Cláudio E. C. Campelo
    • 2
    Email author
  • Lucas Caracas de Figueiredo
    • 1
  • Julio Henrique Rocha
    • 2
  • Hugo Feitosa de Figueirêdo
    • 3
  • Cláudio de Souza Baptista
    • 2
  1. 1.Applied Computing GroupFederal University of MaranhãoSão LuísBrasil
  2. 2.Systems and Computing DepartmentFederal University of Campina GrandeCampina GrandeBrasil
  3. 3.Federal Institute of Education, Science and Technology of ParaíbaMonteiroBrasil

Personalised recommendations