Skip to main content

ParetoPrep: Efficient Lower Bounds for Path Skylines and Fast Path Computation

Part of the Lecture Notes in Computer Science book series (LNISA,volume 9239)


Computing cost-optimal paths in network data is an important task in many application areas like transportation networks, computer networks, or social graphs. In many cases, the cost of an edge can be described by various cost criteria. For example, in a road network possible cost criteria are distance, time, ascent, energy consumption or toll fees. In such a multicriteria network, path optimality can be defined in various ways. In particular, optimality might be defined as a combination of the given cost factors. To avoid finding a suitable combination function, methods like path skyline queries return all potentially optimal paths. To compute alternative paths in larger networks, most efficient algorithms rely on lower bound cost estimations to approximate the remaining costs from an arbitrary node to the specified target. In this paper, we introduce ParetoPrep, a new method for efficient lower bound computation which can be used as a preprocessing step in multiple algorithms for computing path alternatives. ParetoPrep requires less time and visits less nodes in the network than state-of-the-art preprocessing steps. Our experiments show that path skyline and linear path skyline computation can be significantly accelareted by ParetoPrep.


  • Optimal Path
  • Target Node
  • Query Time
  • Skyline Query
  • Cost Criterion

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-22363-6_3
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-22363-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. 1.


  1. Andersen, K.A., Skriver, A.J.: A label correcting approach for solving bicriterion shortest-path problems. Comput. Oper. Res. 27, 507–524 (2000)

    MATH  MathSciNet  CrossRef  Google Scholar 

  2. Balteanu, A., Jossé, G., Schubert, M.: Mining driving preferences in multi-cost networks. In: Nascimento, M.A., Sellis, T., Cheng, R., Sander, J., Zheng, Y., Kriegel, H.-P., Renz, M., Sengstock, C. (eds.) SSTD 2013. LNCS, vol. 8098, pp. 74–91. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  3. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering (ICDE), Heidelberg, Germany (2001)

    Google Scholar 

  4. Chew, K.L., Tung, C.T.: A multicriteria pareto-optimal path algorithm. Eur. J. Oper. Res. 62, 203–209 (1992)

    MATH  CrossRef  Google Scholar 

  5. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR-Spektrum 22(4), 425–460 (2000)

    MATH  MathSciNet  CrossRef  Google Scholar 

  6. Ehrgott, M., Raith, A.: A comparison of solution strategies for biobjective shortest path problems. Comput. Oper. Res. 36, 1299–1331 (2009)

    MATH  MathSciNet  CrossRef  Google Scholar 

  7. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* search meets graph theory. Technical report MSR-TR-2004-24, Microsoft Research (2004)

    Google Scholar 

  8. Graf, F., Kriegel, H.-P., Renz, M., Schubert, M.: Mario: Multi attribute routing in open street map (2011)

    Google Scholar 

  9. Guo, C., Jensen, C.S., Kaul, M., Yang, B., Shang, S.: Stochastic skyline route planning under time-varying uncertainty. In: ICDE 2014, pp. 136–147 (2014)

    Google Scholar 

  10. Guo, C., Jensen, C.S., Yang, B., Guo, C., Ma, Y.: Toward personalized, context-aware routing. VLDB J. 24(2), 297–318 (2015)

    CrossRef  Google Scholar 

  11. Hansen, P.: Bicriterion path problems. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Application. Lecture Notes in Economics and Mathematical Systems, vol. 177, pp. 109–127. Springer, Heidelberg (1980)

    CrossRef  Google Scholar 

  12. Ishwar, M., Mote, J., Olson, D.L.: A parametric approach to solving bicriterion shortest path problems. Eur. J. Oper. Res. 53, 81–92 (1991)

    MATH  CrossRef  Google Scholar 

  13. Kriegel, H.P., Renz, M., Schubert, M.: Route skyline queries: a multi-preference path planning approach. In: ICDE 2010, pp. 261–272 (2010)

    Google Scholar 

  14. Machuca, E., Mandow, L.: Multiobjective heuristic search in road maps. Expert Syst. Appl. 39, 6435–6445 (2012)

    CrossRef  Google Scholar 

  15. Müller-Hannemann, M., Weihe, K.: Pareto shortest paths is often feasible in practice. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE 2001. LNCS, vol. 2141, pp. 185–197. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  16. Shekelyan, M., Jossé, G., Schubert, M.: Linear path skylines in multicriteria networks. In: ICDE15, pp. 459–470 (2015)

    Google Scholar 

  17. Shekelyan, M., Jossé, G., Schubert, M., Kriegel, H.-P.: Linear path skyline computation in bicriteria networks. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014, Part I. LNCS, vol. 8421, pp. 173–187. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  18. Skriver, A.J.: A classification of bicriterion shortest path (BSP) algorithms. Asia Pac. J. Ope. Res. 17, 199–212 (2000)

    MATH  MathSciNet  Google Scholar 

  19. Stewart, B., Chelsea, I.: White. Multiobjective a*. J. ACM 38, 775–814 (1991)

    MATH  CrossRef  Google Scholar 

  20. Tarapata, Z.: Selected multicriteria shortest path problems: an analysis of complexity, models and adaptation of standard algorithms. Int. J. Appl. Math. Comput. Sci. 17, 269–287 (2007)

    MATH  MathSciNet  CrossRef  Google Scholar 

Download references


This research has received funding from the Shared E-Fleet project (in the IKTII program), by the German Federal Ministry of Economics and Technology (grant no. 01ME12107).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Gregor Jossé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Shekelyan, M., Jossé, G., Schubert, M. (2015). ParetoPrep: Efficient Lower Bounds for Path Skylines and Fast Path Computation. In: , et al. Advances in Spatial and Temporal Databases. SSTD 2015. Lecture Notes in Computer Science(), vol 9239. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22362-9

  • Online ISBN: 978-3-319-22363-6

  • eBook Packages: Computer ScienceComputer Science (R0)