Skip to main content

Abstract

Electrospinning is a technique used in the production of polymer nanofibre meshes. The use of biodegradable and biocompatible polymers to produce nanofibres that closely mimic the extracellular matrix (ECM) of different tissues has opened a wide range of possibilities for the application of electrospinning in Tissue Engineering. It is believed that nano-features (such as voids and surface cues) present in nanofibre mesh scaffolds, combined with the chemical composition of the fibres, can stimulate cell attachment, growth and differentiation. Despite the widespread use of electrospun nanofibres in tissue engineering, the present chapter will focus on the advances made in the utilisation of these materials in bone, cartilage and tooth related applications. Several aspects will be taken into consideration, namely the choice of polymers, the surface modification of the nanofibres in order to achieve mineralisation, and also the biological application of such materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdal-hay A, Hwang M-G, Lim JK (2012) In vitro bioactivity of titanium implants coated with bicomponent hybrid biodegradable polymers. J Sol-Gel Sci Technol 64:756–764

    CAS  Google Scholar 

  • Aghdam RM, Najarian S, Shakhesi S, Khanlari S, Shaabani K, Sharifi S (2012) Investigating the effect of PGA on physical and mechanical properties of electrospun PCL/PGA blend nanofibers. J Appl Polym Sci 124:123–131

    CAS  Google Scholar 

  • Ajalloueian F, Zeiai S, Fossum M, Hilborn JG (2014a) Constructs of electrospun PLGA, compressed collagen and minced urothelium for minimally manipulated autologous bladder tissue expansion. Biomaterials 35:5741–5748

    CAS  PubMed  Google Scholar 

  • Ajalloueian F, Tavanai H, Hilborn J, Donzel-Gargand O, Leifer K, Wickham A et al (2014b) Emulsion electrospinning as an approach to fabricate PLGA/chitosan nanofibers for biomedical applications. BioMed Res Int 2014:475280

    PubMed Central  PubMed  Google Scholar 

  • Albuquerque MT, Valera MC, Nakashima M, Nor JE, Bottino MC (2014) Tissue-engineering-based strategies for regenerative endodontics. J Dent Res 93:1222–1231

    CAS  PubMed  Google Scholar 

  • Allo BA, Rizkalla AS, Mequanint K (2010) Synthesis and electrospinning of epsilon-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Langmuir 26:18340–18348

    CAS  PubMed  Google Scholar 

  • Amoroso NJ, D’Amore A, Hong Y, Rivera CP, Sacks MS, Wagner WR (2012) Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering. Acta Biomater 8:4268–4277

    PubMed Central  CAS  PubMed  Google Scholar 

  • Andiappan M, Sundaramoorthy S, Panda N, Meiyazhaban G, Winfred S, Venkataraman G et al (2013) Electrospun eri silk fibroin scaffold coated with hydroxyapatite for bone tissue engineering applications. Prog Biomater 2:1–11

    Google Scholar 

  • Aniket RR, Hall B, Marriott I, El-Ghannam A (2014) Early osteoblast responses to orthopedic implants: synergy of surface roughness and chemistry of bioactive ceramic coating. J Biomed Mater Res Part A 103:1961–1973

    Google Scholar 

  • Anton F (1934) Process and apparatus for preparing artificial threads. Google Patents

    Google Scholar 

  • Anton F (1944) Method and apparatus for spinning. Google Patents

    Google Scholar 

  • Araujo JV, Martins A, Leonor IB, Pinho ED, Reis RL, Neves NM (2008) Surface controlled biomimetic coating of polycaprolactone nanofiber meshes to be used as bone extracellular matrix analogues. J Biomater Sci Polym Ed 19:1261–1278

    CAS  PubMed  Google Scholar 

  • Araujo JV, Cunha-Reis C, Rada T, da Silva MA, Gomes ME, Yang Y et al (2010) Dynamic culture of osteogenic cells in biomimetically coated poly(caprolactone) nanofibre mesh constructs. Tissue Eng Part A 16:557–563

    CAS  PubMed  Google Scholar 

  • Asgharnia S, Alizadeh P (2013) Synthesis and characterization of SiO2–CaO–P2O5–MgO based bioactive glass and glass-ceramic nanofibres by electrospinning. Mater Lett 101:107–110

    CAS  Google Scholar 

  • Badami AS, Kreke MR, Thompson MS, Riffle JS, Goldstein AS (2006) Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 27:596–606

    CAS  PubMed  Google Scholar 

  • Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53

    CAS  PubMed  Google Scholar 

  • Baker BM, Mauck RL (2007) The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28:1967–1977

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baykan E, Koc A, Eser Elcin A, Murat Elcin Y (2014) Evaluation of a biomimetic poly(ε-caprolactone)/β-tricalcium phosphate multispiral scaffold for bone tissue engineering: in vitro and in vivo studies. Biointerphases 9:029011

    PubMed  Google Scholar 

  • Bianco A, Di Federico E, Cacciotti I (2011) Electrospun poly(ε-caprolactone)-based composites using synthesized β-tricalcium phosphate. Polym Adv Technol 22:1832–1841

    CAS  Google Scholar 

  • Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials 30:2175–2179

    CAS  PubMed  Google Scholar 

  • Boland ED, Wnek GE, Simpson DG, Pawlowski KJ, Bowlin GL (2001) Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning. J Macromol Sci-Pure Appl Chem 38:1231–1243

    Google Scholar 

  • Boland ED, Telemeco TA, Simpson DG, Wnek GE, Bowlin GL (2004) Utilizing acid pretreatment and electrospinning to improve biocompatibility of poly(glycolic acid) for tissue engineering. J Biomed Mater Res B Appl Biomater 71B:144–152

    CAS  Google Scholar 

  • Bottino MC, Kamocki K, Yassen GH, Platt JA, Vail MM, Ehrlich Y et al (2013) Bioactive nanofibrous scaffolds for regenerative endodontics. J Dent Res 92:963–969

    CAS  PubMed  Google Scholar 

  • Braunecker J, Baba M, Milroy GE, Cameron RE (2004) The effects of molecular weight and porosity on the degradation and drug release from polyglycolide. Int J Pharm 282:19–34

    CAS  PubMed  Google Scholar 

  • Brenner EK, Schiffman JD, Thompson EA, Toth LJ, Schauer CL (2012) Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions. Carbohydr Polym 87:926–929

    CAS  Google Scholar 

  • Brenner EK, Schiffman JD, Toth LJ, Szewczyk JC, Schauer CL (2013) Phosphate salts facilitate the electrospinning of hyaluronic acid fiber mats. J Mater Sci 48:7805–7811

    CAS  Google Scholar 

  • Bueno EM, Glowacki J (2009) Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol 5:685–697

    PubMed  Google Scholar 

  • Buschmann J, Harter L, Gao S, Hemmi S, Welti M, Hild N et al (2012) Tissue engineered bone grafts based on biomimetic nanocomposite PLGA/amorphous calcium phosphate scaffold and human adipose-derived stem cells. Injury 43:1689–1697

    PubMed  Google Scholar 

  • Cai S, Xu H, Jiang Q, Yang Y (2013) Novel 3D electrospun scaffolds with fibers oriented randomly and evenly in three dimensions to closely mimic the unique architectures of extracellular matrices in soft tissues: fabrication and mechanism study. Langmuir 29:2311–2318

    CAS  PubMed  Google Scholar 

  • Casper CL, Yamaguchi N, Kiick KL, Rabolt JF (2005) Functionalizing electrospun fibers with biologically relevant macromolecules. Biomacromolecules 6:1998–2007

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cestari M, Muller V, da Silva Rodrigues JH, Nakamura CV, Rubira AF, Muniz EC (2014) Preparing silk fibroin nanofibers through electrospinning: further heparin immobilization toward hemocompatibility improvement. Biomacromolecules 15:1762–1767

    CAS  PubMed  Google Scholar 

  • Chakrapani VY, Gnanamani A, Giridev VR, Madhusoothanan M, Sekaran G (2012) Electrospinning of type I collagen and PCL nanofibers using acetic acid. J Appl Polym Sci 125:3221–3227

    CAS  Google Scholar 

  • Chen Z, Mo X, He C, Wang H (2008) Intermolecular interactions in electrospun collagen-chitosan complex nanofibers. Carbohydr Polym 72:410–418

    CAS  Google Scholar 

  • Chen ZG, Wang PW, Wei B, Mo XM, Cui FZ (2010) Electrospun collagen-chitosan nanofiber: a biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomater 6:372–382

    CAS  PubMed  Google Scholar 

  • Cho HJ, Yoo YJ, Kim JW, Park YH, Bae DG, Um IC (2012) Effect of molecular weight and storage time on the wet- and electro-spinning of regenerated silk fibroin. Polym Degrad Stab 97:1060–1066

    CAS  Google Scholar 

  • Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ (2008) The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29:2899–2906

    CAS  PubMed  Google Scholar 

  • Cui W, Li X, Xie C, Zhuang H, Zhou S, Weng J (2010) Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations. Biomaterials 31:4620–4629

    CAS  PubMed  Google Scholar 

  • Cui Z, Wright LD, Guzzo R, Freeman JW, Drissi HD, Nair LS (2013) Poly (d-lactide)/poly (caprolactone) nanofiber-thermogelling chitosan gel composite scaffolds for osteochondral tissue regeneration in a rat model. J Bioact Compat Pol :0883911512472278

    Google Scholar 

  • Dai X, Shivkumar S (2007a) Electrospinning of PVA-calcium phosphate sol precursors for the production of fibrous hydroxyapatite. J Am Ceram Soc 90:1412–1419

    CAS  Google Scholar 

  • Dai X, Shivkumar S (2007b) Electrospinning of hydroxyapatite fibrous mats. Mater Lett 61:2735–2738

    CAS  Google Scholar 

  • Daranarong D, Thapsukhon B, Swanandy N, Molloy R, Punyodom W, Foster LJR (2014) Application of low loading of collagen in electrospun poly (L-lactide)-co-(epsilon-caprolactone) nanofibrous scaffolds to promote cellular biocompatibility. Polym Int 63:1254–1262

    CAS  Google Scholar 

  • De Vrieze S, Westbroek P, Van Camp T, Van Langenhove L (2007) Electrospinning of chitosan nanofibrous structures: feasibility study. J Mater Sci 42:8029–8034

    CAS  Google Scholar 

  • Deng M, Kumbar SG, Nair LS, Weikel AL, Allcock HR, Laurencin CT (2011) Biomimetic structures: biological implications of dipeptide-substituted polyphosphazene–polyester blend nanofiber matrices for load-bearing bone regeneration. Adv Funct Mater 21:2641–2651

    CAS  Google Scholar 

  • Duan B, Yuan X, Zhu Y, Zhang Y, Li X, Zhang Y et al (2006) A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. Eur Polym J 42:2013–2022

    CAS  Google Scholar 

  • Ducheyne P, Hench LL, Kagan A, Martens M, Mulier JC (1979) Short-term bonding behavior of bioglass coatings on metal-substrate. Arch Orthop Trauma Surg 94:155–160

    CAS  PubMed  Google Scholar 

  • el Kenawy R, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH et al (2002) Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release 81:57–64

    CAS  Google Scholar 

  • Erisken C, Kalyon DM, Wang H, Ornek-Ballanco C, Xu J (2011) Osteochondral tissue formation through adipose-derived stromal cell differentiation on biomimetic polycaprolactone nanofibrous scaffolds with graded insulin and beta-glycerophosphate concentrations. Tissue Eng A 17:1239–1252

    CAS  Google Scholar 

  • Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF (1999) Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 20:573–588

    CAS  PubMed  Google Scholar 

  • Frohbergh ME, Katsman A, Botta GP, Lazarovici P, Schauer CL, Wegst UG et al (2012) Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 33:9167–9178

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gamble JL, Harvard Medical S (1941) Chemical anatomy, physiology and pathology of extracellular fluid: a lecture syllabus. Dept. of Pediatrics, The Harvard Medical School, Cambridge

    Google Scholar 

  • Gao C, Gao Q, Bao X, Li Y, Teramoto A, Abe K (2011) Preparation and in vitro bioactivity of novel mesoporous borosilicate bioactive glass nanofibers. J Am Ceram Soc 94:2841–2845

    CAS  Google Scholar 

  • Gao CX, Gao Q, Li YD, Rahaman MN, Teramoto A, Abe K (2013) In vitro evaluation of electrospun gelatin-bioactive glass hybrid scaffolds for bone regeneration. J Appl Polym Sci 127:2588–2599

    CAS  Google Scholar 

  • Geng X, Kwon O-H, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432

    CAS  PubMed  Google Scholar 

  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S (2008) Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29:4532–4539

    CAS  PubMed  Google Scholar 

  • Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281:581–586

    CAS  Google Scholar 

  • Green AM, Jansen JA, van der Waerden JP, von Recum AF (1994) Fibroblast response to microtextured silicone surfaces: texture orientation into or out of the surface. J Biomed Mater Res 28:647–653

    CAS  PubMed  Google Scholar 

  • He J, Cheng Y, Li P, Zhang Y, Zhang H, Cui S (2013) Preparation and characterization of biomimetic tussah silk fibroin/chitosan composite nanofibers. Iran Polym J 22:537–547

    CAS  Google Scholar 

  • Hench LL, Paschall HA (1973) Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res 7:25–42

    CAS  PubMed  Google Scholar 

  • Hench LL, Pantano CG, Buscemi PJ, Greenspan DC (1977) Analysis of bioglass fixation of hip prostheses. J Biomed Mater Res 11:267–282

    CAS  PubMed  Google Scholar 

  • Homayoni H, Ravandi SAH, Valizadeh M (2009) Electrospinning of chitosan nanofibers: processing optimization. Carbohydr Polym 77:656–661

    CAS  Google Scholar 

  • Hong S, Kim G (2011) Fabrication of size-controlled three-dimensional structures consisting of electrohydrodynamically produced polycaprolactone micro/nanofibers. Appl Phys A 103:1009–1014

    CAS  Google Scholar 

  • Hong Y, Chen X, Jing X, Fan H, Guo B, Gu Z et al (2010) Preparation, bioactivity, and drug release of hierarchical nanoporous bioactive glass ultrathin fibers. Adv Mater 22:754–758

    CAS  PubMed  Google Scholar 

  • Hsu SH, Whu SW, Hsieh SC, Tsai CL, Chen DC, Tan TS (2004) Evaluation of chitosan-alginate-hyaluronate complexes modified by an RGD-containing protein as tissue-engineering scaffolds for cartilage regeneration. Artif Organs 28:693–703

    CAS  PubMed  Google Scholar 

  • Huang Z-M, Zhang YZ, Ramakrishna S, Lim CT (2004) Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 45:5361–5368

    CAS  Google Scholar 

  • Jamshidi Adegani F, Langroudi L, Ardeshirylajimi A, Dinarvand P, Dodel M, Doostmohammadi A et al (2014) Coating of electrospun poly(lactic-co-glycolic acid) nanofibers with willemite bioceramic: improvement of bone reconstruction in rat model. Cell Biol Int 38:1271–1279

    CAS  PubMed  Google Scholar 

  • Jeong H-G, Kim Y-E, Kim Y-J (2013) Fabrication of poly(vinyl acetate)/polysaccharide biocomposite nanofibrous membranes for tissue engineering. Macromol Res 21:1233–1240

    CAS  Google Scholar 

  • Ji J, Bar-On B, Wagner HD (2012) Mechanics of electrospun collagen and hydroxyapatite/collagen nanofibers. J Mech Behav Biomed Mater 13:185–193

    CAS  PubMed  Google Scholar 

  • Jing X, Salick MR, Cordie T, Mi H-Y, Peng X-F, Turng L-S (2014) Electrospinning homogeneous nanofibrous poly(propylene carbonate)/gelatin composite scaffolds for tissue engineering. Ind Eng Chem Res 53:9391–9400

    CAS  Google Scholar 

  • Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT (2008) Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg (Am Vol) 90A:36–42

    Google Scholar 

  • Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH (2005) Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer 46:5094–5102

    CAS  Google Scholar 

  • Kim YB, Kim G (2012) Rapid-prototyped collagen scaffolds reinforced with PCL/[small beta]-TCP nanofibres to obtain high cell seeding efficiency and enhanced mechanical properties for bone tissue regeneration. J Mater Chem 22:16880–16889

    CAS  Google Scholar 

  • Kim MS, Kim GH (2014) Highly porous electrospun 3D polycaprolactone/β-TCP biocomposites for tissue regeneration. Mater Lett 120:246–250

    CAS  Google Scholar 

  • Kim HW, Lee HH, Knowles JC (2006a) Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration. J Biomed Mater Res A 79:643–649

    PubMed  Google Scholar 

  • Kim HW, Kim HE, Knowles JC (2006b) Production and potential of bioactive glass nanofibers as a next-generation biomaterial. Adv Funct Mater 16:1529–1535

    Google Scholar 

  • Kim HW, Lee HH, Chun GS (2008) Bioactivity and osteoblast responses of novel biomedical nanocomposites of bioactive glass nanofiber filled poly(lactic acid). J Biomed Mater Res A 85:651–663

    PubMed  Google Scholar 

  • Kim SJ, Jang DH, Park WH, Min B-M (2010) Fabrication and characterization of 3-dimensional PLGA nanofiber/microfiber composite scaffolds. Polymer 51:1320–1327

    CAS  Google Scholar 

  • Kim J-J, Bae W-J, Kim J-M, Kim J-J, Lee E-J, Kim H-W et al (2013) Mineralized polycaprolactone nanofibrous matrix for odontogenesis of human dental pulp cells. J Biomater Appl :0885328213495903

    Google Scholar 

  • Kim H, Che L, Ha Y, Ryu W (2014a) Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. Mater Sci Eng C 40:324–335

    CAS  Google Scholar 

  • Kim MS, Son J, Lee H, Hwang H, Choi CH, Kim G (2014b) Highly porous 3D nanofibrous scaffolds processed with an electrospinning/laser process. Curr Appl Phys 14:1–7

    Google Scholar 

  • Kokubo T (1991) Bioactive glass-ceramics – properties and applications. Biomaterials 12:155–163

    CAS  PubMed  Google Scholar 

  • Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    CAS  PubMed  Google Scholar 

  • Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic. J Biomed Mater Res 24:721–734

    CAS  PubMed  Google Scholar 

  • Kolbuk D, Sajkiewicz P, Maniura-Weber K, Fortunato G (2013) Structure and morphology of electrospun polycaprolactone/gelatine nanofibres. Eur Polym J 49:2052–2061

    CAS  Google Scholar 

  • Krucinska I, Chrzanowska O, Bogun M, Kowalczuk M, Dobrzynski P (2014) Fabrication of PLGA/HAP and PLGA/PHB/HAP fibrous nanocomposite materials for osseous tissue regeneration. Autex Res J 14:95–110

    Google Scholar 

  • Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT (2008) Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 29:4100–4107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lai G-J, Shalumon KT, Chen S-H, Chen J-P (2014) Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Carbohydr Polym 111:288–297

    CAS  PubMed  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920

    CAS  PubMed  Google Scholar 

  • Lao LH, Wang YJ, Zhu Y, Zhang YY, Gao CY (2011) Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J Mater Sci Mater Med 22:1873–1884

    CAS  PubMed  Google Scholar 

  • Lee S, Obendorf SK (2007) Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration. Text Res J 77:696–702

    CAS  Google Scholar 

  • Lee KH, Kim HY, Khil MS, Ra YM, Lee DR (2003) Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer 44:1287–1294

    CAS  Google Scholar 

  • Lee JH, Rim NG, Jung HS, Shin H (2010) Control of osteogenic differentiation and mineralization of human mesenchymal stem cells on composite nanofibers containing poly lactic-co-(glycolic acid) and hydroxyapatite. Macromol Biosci 10:173–182

    CAS  PubMed  Google Scholar 

  • Lee B-K, Ju YM, Cho J-G, Jackson JD, Lee SJ, Atala A et al (2012) End-to-side neurorrhaphy using an electrospun PCL/collagen nerve conduit for complex peripheral motor nerve regeneration. Biomaterials 33:9027–9036

    CAS  PubMed  Google Scholar 

  • Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621

    CAS  PubMed  Google Scholar 

  • Li C, Vepari C, Jin H-J, Kim HJ, Kaplan DL (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27:3115–3124

    CAS  PubMed  Google Scholar 

  • Li X, Liu W, Sun L, Aifantis KE, Yu B, Fan Y et al (2014a) Resin composites reinforced by nanoscaled fibers or tubes for dental regeneration. BioMed Res Int 2014:13

    Google Scholar 

  • Li D, Wu T, He N, Wang J, Chen W, He L et al (2014b) Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration. Colloids Surf B: Biointerfaces 121:432–443

    CAS  PubMed  Google Scholar 

  • Li G, Zhang T, Li M, Fu N, Fu Y, Ba K et al (2014c) Electrospun fibers for dental and craniofacial applications. Curr Stem Cell Res Ther 9:187–195

    CAS  PubMed  Google Scholar 

  • Lin HM, Lin YH, Hsu FY (2012) Preparation and characterization of mesoporous bioactive glass/polycaprolactone nanofibrous matrix for bone tissues engineering. J Mater Sci Mater Med 23:2619–2630

    CAS  PubMed  Google Scholar 

  • Liu Y, Ma G, Fang D, Xu J, Zhang H, Nie J (2011) Effects of solution properties and electric field on the electrospinning of hyaluronic acid. Carbohydr Polym 83:1011–1015

    CAS  Google Scholar 

  • Liverani L, Abbruzzese F, Mozetic P, Basoli F, Rainer A, Trombetta M (2014) Electrospinning of hydroxyapatite-chitosan nanofibers for tissue engineering applications. Asia Pac J Chem Eng 9:407–414

    CAS  Google Scholar 

  • Lu L, Wu D, Zhang M, Zhou W (2012) Fabrication of polylactide/poly(ε-caprolactone) blend fibers by electrospinning: morphology and orientation. Ind Eng Chem Res 51:3682–3691

    CAS  Google Scholar 

  • Lyu S, Huang C, Yang H, Zhang X (2013) Electrospun fibers as a scaffolding platform for bone tissue repair. J Orthop Res: Off Publ Orthop Res Soc 31:1382–1389

    CAS  Google Scholar 

  • Ma Z, Chen F, Zhu YJ, Cui T, Liu XY (2011) Amorphous calcium phosphate/poly(D, L-lactic acid) composite nanofibers: electrospinning preparation and biomineralization. J Colloid Interface Sci 359:371–379

    CAS  PubMed  Google Scholar 

  • Martins A, Araujo JV, Reis RL, Neves NM (2007) Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine 2:929–942

    PubMed  Google Scholar 

  • Martins A, Chung S, Pedro AJ, Sousa RA, Marques AP, Reis RL et al (2009) Hierarchical starch-based fibrous scaffold for bone tissue engineering applications. J Tissue Eng Regen Med 3:37–42

    CAS  PubMed  Google Scholar 

  • Martins A, Duarte AR, Faria S, Marques AP, Reis RL, Neves NM (2010) Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. Biomaterials 31:5875–5885

    CAS  PubMed  Google Scholar 

  • Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238

    CAS  PubMed  Google Scholar 

  • Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004a) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297

    CAS  PubMed  Google Scholar 

  • Min B-M, Lee SW, Lim JN, You Y, Lee TS, Kang PH et al (2004b) Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45:7137–7142

    CAS  Google Scholar 

  • Mo XM, Xu CY, Kotaki M, Ramakrishna S (2004) Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25:1883–1890

    CAS  PubMed  Google Scholar 

  • Moffat KL, Wang IN, Rodeo SA, Lu HH (2009) Orthopedic interface tissue engineering for the biological fixation of soft tissue grafts. Clin Sports Med 28:157–176

    PubMed Central  PubMed  Google Scholar 

  • Moroni L, Schotel R, Hamann D, de Wijn JR, van Blitterswijk CA (2008) 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation. Adv Funct Mater 18:53–60

    CAS  Google Scholar 

  • Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466

    CAS  PubMed  Google Scholar 

  • Nerurkar NL, Han W, Mauck RL, Elliott DM (2011) Homologous structure-function relationships between native fibrocartilage and tissue engineered from MSC-seeded nanofibrous scaffolds. Biomaterials 32:461–468

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nie H, Soh BW, Fu YC, Wang CH (2008) Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery. Biotechnol Bioeng 99:223–234

    CAS  PubMed  Google Scholar 

  • Novotna K, Zajdlova M, Suchy T, Hadraba D, Lopot F, Zaloudkova M et al (2014) Polylactide nanofibers with hydroxyapatite as growth substrates for osteoblast-like cells. J Biomed Mater Res A 102:3918–3930

    PubMed  Google Scholar 

  • Obata A, Ozasa H, Kasuga T, Jones JR (2013) Cotton wool-like poly(lactic acid)/vaterite composite scaffolds releasing soluble silica for bone tissue engineering. J Mater Sci Mater Med 24:1649–1658

    CAS  PubMed  Google Scholar 

  • Ohgo K, Zhao C, Kobayashi M, Asakura T (2003) Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method. Polymer 44:841–846

    CAS  Google Scholar 

  • Olsson H, Petersson K, Rohlin M (2006) Formation of a hard tissue barrier after pulp cappings in humans. A systematic review. Int Endod J 39:429–442

    CAS  PubMed  Google Scholar 

  • Patlolla A, Arinzeh TL (2014) Evaluating apatite formation and osteogenic activity of electrospun composites for bone tissue engineering. Biotechnol Bioeng 111:1000–1017

    CAS  PubMed  Google Scholar 

  • Petersen W, Tillmann B (1998) Collagenous fibril texture of the human knee joint menisci. Anat Embryol 197:317–324

    CAS  PubMed  Google Scholar 

  • Poologasundarampillai G, Wang D, Li S, Nakamura J, Bradley R, Lee PD et al (2014) Cotton-wool-like bioactive glasses for bone regeneration. Acta Biomater 10:3733–3746

    CAS  PubMed  Google Scholar 

  • Powell HM, Supp DM, Boyce ST (2008) Influence of electrospun collagen on wound contraction of engineered skin substitutes. Biomaterials 29:834–843

    CAS  PubMed  Google Scholar 

  • Prabhakaran MP, Venugopal JR, Ramakrishna S (2009) Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 30:4996–5003

    CAS  PubMed  Google Scholar 

  • Qin X-H, Wang S-Y (2006) Filtration properties of electrospinning nanofibers. J Appl Polym Sci 102:1285–1290

    CAS  Google Scholar 

  • Ramakrishna S, Jose R, Archana PS, Nair AS, Balamurugan R, Venugopal J et al (2010) Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine. J Mater Sci 45:6283–6312

    CAS  Google Scholar 

  • Recum AF, Shannon CE, Cannon CE, Long KJ, Kooten TG, Meyle J (1996) Surface roughness, porosity, and texture as modifiers of cellular adhesion. Tissue Eng 2:241–253

    CAS  PubMed  Google Scholar 

  • Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD et al (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461

    CAS  PubMed  Google Scholar 

  • Riboldi SA, Sampaolesi M, Neuenschwander P, Cossu G, Mantero S (2005) Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering. Biomaterials 26:4606–4615

    CAS  PubMed  Google Scholar 

  • Roosa SM, Kemppainen JM, Moffitt EN, Krebsbach PH, Hollister SJ (2010) The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J Biomed Mater Res A 92:359–368

    PubMed  Google Scholar 

  • Sangsanoh P, Supaphol P (2006) Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules 7:2710–2714

    CAS  PubMed  Google Scholar 

  • Scarber RE, Salaam AD, Thomas V, Janowski GM, Dean D (2013) Direct sol-gel electrospinning of fibrous bioglass scaffolds for bone tissue engineering. J Biomater Tissue Eng 3:440–447

    CAS  Google Scholar 

  • Schneider OD, Loher S, Brunner TJ, Uebersax L, Simonet M, Grass RN et al (2008a) Cotton wool-like nanocomposite biomaterials prepared by electrospinning: in vitro bioactivity and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 84B:350–362

    CAS  Google Scholar 

  • Schneider OD, Loher S, Brunner TJ, Uebersax L, Simonet M, Grass RN et al (2008b) Cotton wool-like nanocomposite biomaterials prepared by electrospinning: in vitro bioactivity and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 84:350–362

    PubMed  Google Scholar 

  • Schneider OD, Weber F, Brunner TJ, Loher S, Ehrbar M, Schmidlin PR et al (2009) In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects. Acta Biomater 5:1775–1784

    CAS  PubMed  Google Scholar 

  • Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P et al (2007) Guidance of glial cell. migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials 28:3012–3025

    CAS  PubMed  Google Scholar 

  • Setton LA, Guilak F, Hsu EW, Vail TP (1999) Biomechanical factors in tissue engineered meniscal repair. Clin Orthop Relat Res 367S:S254–S272

    Google Scholar 

  • Seyedjafari E, Soleimani M, Ghaemi N, Shabani I (2010) Nanohydroxyapatite-coated electrospun poly(L-lactide) nanofibers enhance osteogenic differentiation of stem cells and induce ectopic bone formation. Biomacromolecules 11:3118–3125

    CAS  PubMed  Google Scholar 

  • Sheikh FA, Ju HW, Moon BM, Park HJ, Kim JH, Lee OJ et al (2013) A novel approach to fabricate silk nanofibers containing hydroxyapatite nanoparticles using a three-way stopcock connector. Nanoscale Res Lett 8:15

    Google Scholar 

  • Shin SH, Purevdorj O, Castano O, Planell JA, Kim HW (2012) A short review: recent advances in electrospinning for bone tissue regeneration. J Tissue Eng 3:2041731412443530

    Google Scholar 

  • Silva CSR, Luz GM, Gamboa-martÍnez TC, Mano JF, GÓmez ribelles JL, GÓmez-tejedor JA (2013) Poly(ɛ-caprolactone) electrospun scaffolds filled with nanoparticles. Production and optimization according to Taguchi’s methodology. J Macromol Sci B 53:781–799

    Google Scholar 

  • Sisson K, Zhang C, Farach-Carson MC, Chase DB, Rabolt JF (2010) Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. J Biomed Mater Res A 94A:1312–1320

    CAS  Google Scholar 

  • Srouji S, Ben-David D, Lotan R, Livne E, Avrahami R, Zussman E (2011) Slow-release human recombinant bone morphogenetic protein-2 embedded within electrospun scaffolds for regeneration of bone defect: in vitro and in vivo evaluation. Tissue Eng A 17:269–277

    CAS  Google Scholar 

  • Stanishevsky A, Chowdhury S, Chinoda P, Thomas V (2008) Hydroxyapatite nanoparticle loaded collagen fiber composites: microarchitecture and nanoindentation study. J Biomed Mater Res A 86A:873–882

    CAS  Google Scholar 

  • Stankus JJ, Freytes DO, Badylak SF, Wagner WR (2008) Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. J Biomater Sci Polym Ed 19:635–652

    PubMed Central  CAS  PubMed  Google Scholar 

  • Su Y, Su Q, Liu W, Lim M, Venugopal JR, Mo X et al (2012) Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering. Acta Biomater 8:763–771

    CAS  PubMed  Google Scholar 

  • Teng S-H, Lee E-J, Wang P, Kim H-E (2008) Collagen/hydroxyapatite composite nanofibers by electrospinning. Mater Lett 62:3055–3058

    CAS  Google Scholar 

  • Tetteh G, Khan AS, Delaine-Smith RM, Reilly GC, Rehman IU (2014) Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles. J Mech Behav Biomed Mater 39:95–110

    CAS  PubMed  Google Scholar 

  • Thorvaldsson A, Stenhamre H, Gatenholm P, Walkenstrom P (2008) Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules 9:1044–1049

    CAS  PubMed  Google Scholar 

  • Tiwari SK, Tzezana R, Zussman E, Venkatraman SS (2010) Optimizing partition-controlled drug release from electrospun core–shell fibers. Int J Pharm 392:209–217

    CAS  PubMed  Google Scholar 

  • Tuzlakoglu K, Bolgen N, Salgado AJ, Gomes ME, Piskin E, Reis RL (2005) Nano- and micro-fiber combined scaffolds: a new architecture for bone tissue engineering. J Mater Sci Mater Med 16:1099–1104

    CAS  PubMed  Google Scholar 

  • Van Lieshout MI, Vaz CM, Rutten MCM, Peters GWM, Baaijens FPT (2006) Electrospinning versus knitting: two scaffolds for tissue engineering of the aortic valve. J Biomater Sci Polym Ed 17:77–89

    PubMed  Google Scholar 

  • Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomedicine 1:15–30

    PubMed Central  CAS  PubMed  Google Scholar 

  • Venugopal JR, Zhang YZ, Ramakrishna S (2006) In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif Organs 30:440–446

    CAS  PubMed  Google Scholar 

  • Wang X, Grogan SP, Rieser F, Winkelmann V, Maquet V, Berge ML et al (2004) Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study. Biomaterials 25:3681–3688

    CAS  PubMed  Google Scholar 

  • Wang C, Yan K-W, Lin Y-D, Hsieh PCH (2010) Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release. Macromolecules 43:6389–6397

    CAS  Google Scholar 

  • Wu Y, Hench LL, Du J, Choy K-L, Guo J (2004) Preparation of hydroxyapatite fibers by electrospinning technique. J Am Ceram Soc 87:1988–1991

    CAS  Google Scholar 

  • Xia W, Zhang D, Chang J (2007) Fabrication and in vitro biomineralization of bioactive glass (BG) nanofibres. Nanotechnology 18:135601

    PubMed  Google Scholar 

  • Xin X, Hussain M, Mao JJ (2007) Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 28:316–325

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu C, Yang F, Wang S, Ramakrishna S (2004) In vitro study of human vascular endothelial cell function on materials with various surface roughness. J Biomed Mater Res A 71:154–161

    PubMed  Google Scholar 

  • Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610

    CAS  PubMed  Google Scholar 

  • Yang F, Wolke JGC, Jansen JA (2008) Biomimetic calcium phosphate coating on electrospun poly(ɛ-caprolactone) scaffolds for bone tissue engineering. Chem Eng J 137:154–161

    CAS  Google Scholar 

  • Yang X, Yang F, Walboomers XF, Bian Z, Fan M, Jansen JA (2010) The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. J Biomed Mater Res A 93:247–257

    PubMed  Google Scholar 

  • Yao SL, Wang XM, Liu X, Wang RH, Deng CS, Cui FZ (2013) Effects of ambient relative humidity and solvent properties on the. Electrospinning of pure hyaluronic acid nanofibers. J Nanosci Nanotechnol 13:4752–4758

    CAS  PubMed  Google Scholar 

  • Yeo I-S, Oh J-E, Jeong L, Lee TS, Lee SJ, Park WH et al (2008) Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures. Biomacromolecules 9:1106–1116

    CAS  PubMed  Google Scholar 

  • Yin A, Zhang K, McClure MJ, Huang C, Wu J, Fang J et al (2013) Electrospinning collagen/chitosan/poly(L-lactic acid-co-epsilon-caprolactone) to form a vascular graft: mechanical and biological characterization. J Biomed Mater Res A 101:1292–1301

    PubMed  Google Scholar 

  • Yokoyama Y, Hattori S, Yoshikawa C, Yasuda Y, Koyama H, Takato T et al (2009) Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric. Mater Lett 63:754–756

    CAS  Google Scholar 

  • Yoon H, Kim G (2011) A three-dimensional polycaprolactone scaffold combined with a drug delivery system consisting of electrospun nanofibers. J Pharm Sci 100:424–430

    CAS  PubMed  Google Scholar 

  • Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082

    CAS  PubMed  Google Scholar 

  • Yunos DM, Ahmad Z, Salih V, Boccaccini AR (2013) Stratified scaffolds for osteochondral tissue engineering applications: electrospun PDLLA nanofibre coated bioglass(R)-derived foams. J Biomater Appl 27:537–551

    CAS  PubMed  Google Scholar 

  • Zhang J-G, Mo X-M (2013) Current research on electrospinning of silk fibroin and its blends with natural and synthetic biodegradable polymers. Front Mater Sci 7:129–142

    CAS  Google Scholar 

  • Zhang YJ, Huang YD, Li FF, Wang L, Jin ZH, ieee (2004) Electrospun non-woven mats of EVOH. Isdeiv: xxith international symposium on discharges and electrical insulation in vacuum, vols 1 and 2. Proceedings, Piscataway, New Jersey, pp 106–109

    Google Scholar 

  • Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S (2006) Crosslinking of the electrospun gelatin nanofibers. Polymer 47:2911–2917

    CAS  Google Scholar 

  • Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322

    CAS  PubMed  Google Scholar 

  • Zhang F, Zuo B, Fan Z, Xie Z, Lu Q, Zhang X et al (2012a) Mechanisms and control of silk-based electrospinning. Biomacromolecules 13:798–804

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang X, Cai Q, Liu H, Zhang S, Wei Y, Yang X et al (2012b) Calcium ion release and osteoblastic behavior of gelatin/beta-tricalcium phosphate composite nanofibers fabricated by electrospinning. Mater Lett 73:172–175

    CAS  Google Scholar 

  • Zhang S, Chen L, Jiang Y, Cai Y, Xu G, Tong T et al (2013) Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater 9:7236–7247

    CAS  PubMed  Google Scholar 

  • Zhao L, He C, Gao Y, Cen L, Cui L, Cao Y (2008) Preparation and cytocompatibility of PLGA scaffolds with controllable fiber morphology and diameter using electrospinning method. J Biomed Mater Res B Appl Biomater 87B:26–34

    CAS  Google Scholar 

  • Zhong SP, Teo WE, Zhu X, Beuerman R, Ramakrishna S, Yung LYL (2005) Formation of collagen-glycosaminoglycan blended nanofibrous scaffolds and their biological properties. Biomacromolecules 6:2998–3004

    CAS  PubMed  Google Scholar 

  • Zhong S, Teo WE, Zhu X, Beuerman RW, Ramakrishna S, Yung LY (2006) An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J Biomed Mater Res A 79:456–463

    PubMed  Google Scholar 

  • Zhou Y, Yang D, Chen X, Xu Q, Lu F, Nie J (2008) Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 9:349–354

    CAS  PubMed  Google Scholar 

  • Zhu X, Cui W, Li X, Jin Y (2008) Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules 9:1795–1801

    CAS  PubMed  Google Scholar 

  • Zong XH, Bien H, Chung CY, Yin LH, Fang DF, Hsiao BS et al (2005) Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26:5330–5338

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose V. Araujo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Araujo, J.V., Carvalho, P.P., Best, S.M. (2015). Electrospinning of Bioinspired Polymer Scaffolds. In: Bertassoni, L., Coelho, P. (eds) Engineering Mineralized and Load Bearing Tissues. Advances in Experimental Medicine and Biology, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-319-22345-2_3

Download citation

Publish with us

Policies and ethics