Skip to main content

Microfabrication of Cell-Laden Hydrogels for Engineering Mineralized and Load Bearing Tissues

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 881))

Abstract

Microengineering technologies and advanced biomaterials have extensive applications in the field of regenerative medicine. In this chapter, we review the integration of microfabrication techniques and hydrogel-based biomaterials in the field of dental, bone, and cartilage tissue engineering. We primarily discuss the major features that make hydrogels attractive candidates to mimic extracellular matrix (ECM), and we consider the benefits of three-dimensional (3D) culture systems for tissue engineering applications. We then focus on the fundamental principles of microfabrication techniques including photolithography, soft lithography and bioprinting approaches. Lastly, we summarize recent research on microengineering cell-laden hydrogel constructs for dental, bone and cartilage regeneration, and discuss future applications of microfabrication techniques for load-bearing tissue engineering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

BMP:

Bone morphogenetic protein

μCP:

Microcontact printing

DPSC:

Dental pulp stem cell

ECM:

Extracellular matrix

GelMA:

Gelatin methacrylate

HA:

Hydroxyapatite

MAPLE DW:

Matrix assisted pulsed laser evaporation direct write

MSC:

Mesenchymal stem cell

PCL:

Poly-ε-caprolactone

PDL:

Periodontal ligament

PDMS:

Polydimethylsiloxane

PD-PEGDA:

Photodegradable PEG diacrylate

PEG:

Polyethylene glycol

PGA:

Polyglycolic acid

PLGA:

Poly-L-lactate-co-glycolic acid

PVA:

Poly(vinyl-alcohol)

RGD:

Arg-Gly-Asp

SCAP:

Stem cells from apical papilla

SHED:

Stem cells from human exfoliated deciduous teeth

References

  • Albrecht DR, Underhill GH, Wassermann TB, Sah RL, Bhatia SN (2006) Probing the role of multicellular organization in three-dimensional microenvironments. Nat Methods 3:369–375

    CAS  PubMed  Google Scholar 

  • Ameer GA, Mahmood TA, Langer R (2002) A biodegradable composite scaffold for cell transplantation. J Orthop Res 20:16–19

    CAS  PubMed  Google Scholar 

  • Andersson H, van den Berg A (2004) Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. Lab Chip 4:98–103

    CAS  PubMed  Google Scholar 

  • Annabi N et al (2013) Highly elastic micropatterned hydrogel for engineering functional cardiac tissue. Adv Funct Mater 23:4950–4959

    Google Scholar 

  • Annabi N et al (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26:85–124

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baker BM, Chen CS (2012) Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 125:3015–3024

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baler K et al (2014) Advanced nanocomposites for bone regeneration. Biomater Sci 2:1355–1366

    CAS  Google Scholar 

  • Baranski JD et al (2013) Geometric control of vascular networks to enhance engineered tissue integration and function. Proc Natl Acad Sci U S A 110:7586–7591

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barron JA, Ringeisen BR, Kim H, Spargo BJ, Chrisey DB (2004) Application of laser printing to mammalian cells. Thin Solid Films 453:383–387

    Google Scholar 

  • Bernard A, Renault JP, Michel B, Bosshard HR, Delamarche E (2000) Microcontact printing of proteins. Adv Mater 12:1067–1070

    CAS  Google Scholar 

  • Birgersdotter A, Sandberg R, Ernberg I (2005) Gene expression perturbation in vitro – a growing case for three-dimensional (3D) culture systems. Semin Cancer Biol 15:405–412

    PubMed  Google Scholar 

  • Bohner M (2000) Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 31(Suppl 4):37–47

    PubMed  Google Scholar 

  • Borenstein JT et al (2007) Microfabrication of three-dimensional engineered scaffolds. Tissue Eng 13:1837–1844

    CAS  PubMed  Google Scholar 

  • Brock A et al (2003) Geometric determinants of directional cell motility revealed using microcontact printing. Langmuir 19:1611–1617

    CAS  PubMed  Google Scholar 

  • Bucholz RW, Carlton A, Holmes R (1989) Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop Relat Res 240:53–62

    Google Scholar 

  • Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504

    CAS  PubMed  Google Scholar 

  • Burnham MR, Turner JN, Szarowski D, Martin DL (2006) Biological functionalization and surface micropatterning of polyacrylamide hydrogels. Biomaterials 27:5883–5891

    CAS  PubMed  Google Scholar 

  • Carrasquillo KG et al (2003) Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic) acid microspheres. Invest Ophthalmol Vis Sci 44:290–299

    PubMed  Google Scholar 

  • Charest JL, Eliason MT, Garcia AJ, King WP (2006) Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates. Biomaterials 27:2487–2494

    CAS  PubMed  Google Scholar 

  • Chen G (2014) Poly(vinyl alcohol)-micropatterned surfaces for manipulation of mesenchymal stem cell functions. Methods Cell Biol 119:17–33

    PubMed  Google Scholar 

  • Chen G et al (2003) The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness. J Biomed Mater Res A 67:1170–1180

    PubMed  Google Scholar 

  • Chen C, Tambe DT, Deng L, Yang L (2013) Biomechanical properties and mechanobiology of the articular chondrocyte. Am J Physiol Cell Physiol 305:C1202–C1208

    CAS  PubMed  Google Scholar 

  • Chiu DT et al (2000) Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc Natl Acad Sci U S A 97:2408–2413

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chung BG, Kang L, Khademhosseini A (2007) Micro- and nanoscale technologies for tissue engineering and drug discovery applications. Expert Opin Drug Discov 2:1653–1668

    CAS  PubMed  Google Scholar 

  • Cohen S et al (1993) Design of synthetic polymeric structures for cell transplantation and tissue engineering. Clin Mater 13:3–10

    CAS  PubMed  Google Scholar 

  • Confavreux CB (2011) Bone: from a reservoir of minerals to a regulator of energy metabolism. Kidney Int Suppl 79:S14–S19

    Google Scholar 

  • Cortesini R (2005) Stem cells, tissue engineering and organogenesis in transplantation. Transpl Immunol 15:81–89

    CAS  PubMed  Google Scholar 

  • Corum LE, Eichinger CD, Hsiao TW, Hlady V (2011) Using microcontact printing of fibrinogen to control surface-induced platelet adhesion and activation. Langmuir 27:8316–8322

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crozatier C, Berre ML, Chen Y (2006) Multi-colour micro-contact printing based on microfluidic network inking. Microelectron Eng 83:910–913

    CAS  Google Scholar 

  • Cushing MC, Anseth KS (2007) Materials science. Hydrogel Cell Cult Sci 316:1133–1134

    CAS  Google Scholar 

  • Damljanovic V, Lagerholm BC, Jacobson K (2005) Bulk and micropatterned conjugation of extracellular matrix proteins to characterized polyacrylamide substrates for cell mechanotransduction assays. Biotechniques 39:847–851

    CAS  PubMed  Google Scholar 

  • DeKosky BJ et al (2010) Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. Tissue Eng Part C Methods 16:1533–1542

    PubMed Central  CAS  PubMed  Google Scholar 

  • Demirci U, Montesano G (2007a) Single cell epitaxy by acoustic picolitre droplets. Lab Chip 7:1139–1145

    CAS  PubMed  Google Scholar 

  • Demirci U, Montesano G (2007b) Cell encapsulating droplet vitrification. Lab Chip 7:1428–1433

    CAS  PubMed  Google Scholar 

  • Diekman BO, Rowland CR, Lennon DP, Caplan AI, Guilak F (2010) Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix. Tissue Eng Part A 16:523–533

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV (2011) Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42(Suppl 2):S3–S15

    PubMed  Google Scholar 

  • Doraiswamy A et al (2007) Laser microfabrication of hydroxyapatite-osteoblast-like cell composites. J Biomed Mater Res A 80:635–643

    CAS  PubMed  Google Scholar 

  • Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485

    CAS  PubMed  Google Scholar 

  • Duailibi SE et al (2008) Bioengineered dental tissues grown in the rat jaw. J Dent Res 87:745–750

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fedorovich NE et al (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13:1905–1925

    CAS  PubMed  Google Scholar 

  • Finkemeier CG (2002) Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 84-A:454–464

    PubMed  Google Scholar 

  • Freed LE, Martin I, Vunjak-Novakovic G (1999) Frontiers in tissue engineering. In vitro modulation of chondrogenesis. Clin Orthop Relat Res 367:S46–S58

    PubMed  Google Scholar 

  • Fu S et al (2009) Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites. J Phys Chem B 113:16518–16525

    CAS  PubMed  Google Scholar 

  • Gallant ND, Charest JL, King WP, Garcia AJ (2007) Micro- and nano-patterned substrates to manipulate cell adhesion. J Nanosci Nanotechnol 7:803–807

    CAS  PubMed  Google Scholar 

  • Gao L, McBeath R, Chen CS (2010) Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin. Stem Cells 28:564–572

    PubMed Central  CAS  PubMed  Google Scholar 

  • Geiger M, Li RH, Friess W (2003) Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 55:1613–1629

    CAS  PubMed  Google Scholar 

  • Gkioni K, Leeuwenburgh SC, Douglas TE, Mikos AG, Jansen JA (2010) Mineralization of hydrogels for bone regeneration. Tissue Eng Part B Rev 16:577–585

    CAS  PubMed  Google Scholar 

  • Gotfredsen K, Walls AW (2007) What dentition assures oral function? Clin Oral Implants Res 18(Suppl 3):34–45

    PubMed  Google Scholar 

  • Gray DS, Tien J, Chen CS (2003) Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. J Biomed Mater Res A 66:605–614

    PubMed  Google Scholar 

  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hacking SA, Khademhosseini A (2009) Applications of microscale technologies for regenerative dentistry. J Dent Res 88:409–421

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang GT et al (2010) Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A 16:605–615

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huebsch N et al (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 9:518–526

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    CAS  PubMed  Google Scholar 

  • Hwang CM et al (2010) Benchtop fabrication of PDMS microstructures by an unconventional photolithographic method. Biofabrication 2:045001

    PubMed Central  PubMed  Google Scholar 

  • Hynd MR, Frampton JP, Dowell-Mesfin N, Turner JN, Shain W (2007) Directed cell growth on protein-functionalized hydrogel surfaces. J Neurosci Methods 162:255–263

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ifkovits JL, Burdick JA (2007) Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 13:2369–2385

    CAS  PubMed  Google Scholar 

  • Ivanovski S, Vaquette C, Gronthos S, Hutmacher DW, Bartold PM (2014) Multiphasic scaffolds for periodontal tissue engineering. J Dent Res 93:1212–1221

    CAS  PubMed  Google Scholar 

  • Jackson DW, Simon TM, Aberman HM (2001) Symptomatic articular cartilage degeneration: the impact in the new millennium. Clin Orthop Relat Res 391:S14–S25

    Google Scholar 

  • Jager M et al (2008) Osteoblast differentiation onto different biometals with an endoprosthetic surface topography in vitro. J Biomed Mater Res A 86:61–75

    CAS  PubMed  Google Scholar 

  • James C et al (1998) Patterned protein layers on solid substrates by thin stamp microcontact printing. Langmuir 14:741–744

    CAS  Google Scholar 

  • Jeon NL et al (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316

    CAS  Google Scholar 

  • Jiang X, Bruzewicz DA, Wong AP, Piel M, Whitesides GM (2005) Directing cell migration with asymmetric micropatterns. Proc Natl Acad Sci U S A 102:975–978

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kamitakahara M, Ohtsuki C, Miyazaki T (2008) Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J Biomater Appl 23:197–212

    CAS  PubMed  Google Scholar 

  • Karp JM et al (2006) A photolithographic method to create cellular micropatterns. Biomaterials 27:4755–4764

    CAS  PubMed  Google Scholar 

  • Kenis PJ, Ismagilov RF, Whitesides GM (1999) Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285:83–85

    CAS  PubMed  Google Scholar 

  • Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A 103:2480–2487

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim BS, Mooney DJ (1998) Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 16:224–230

    CAS  PubMed  Google Scholar 

  • Kim K, Lee CH, Kim BK, Mao JJ (2010a) Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res 89:842–847

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JY et al (2010b) Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng Part A 16:3023–3031

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim K, Yoon DM, Mikos A, Kasper FK (2012) Harnessing cell-biomaterial interactions for osteochondral tissue regeneration. Adv Biochem Eng Biotechnol 126:67–104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim J et al (2013a) Designing nanotopographical density of extracellular matrix for controlled morphology and function of human mesenchymal stem cells. Sci Rep 3:3552

    PubMed  Google Scholar 

  • Kim HN et al (2013b) Nanotopography-guided tissue engineering and regenerative medicine. Adv Drug Deliv Rev 65:536–558

    CAS  PubMed  Google Scholar 

  • Kinnunen I, Aitasalo K, Pollonen M, Varpula M (2000) Reconstruction of orbital floor fractures using bioactive glass. J Craniomaxillofac Surg 28:229–234

    CAS  PubMed  Google Scholar 

  • Klein TJ, Malda J, Sah RL, Hutmacher DW (2009) Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng Part B Rev 15:143–157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324:59–63

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lai JH, Kajiyama G, Smith RL, Maloney W, Yang F (2013) Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels. Sci Rep 3:3553

    PubMed  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    CAS  PubMed  Google Scholar 

  • Langer RS, Vacanti JP (1999) Tissue engineering: the challenges ahead. Sci Am 280:86–89

    CAS  PubMed  Google Scholar 

  • Le Beyec J et al (2007) Cell shape regulates global histone acetylation in human mammary epithelial cells. Exp Cell Res 313:3066–3075

    PubMed Central  PubMed  Google Scholar 

  • Lee CH et al (2014) Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A 20:1342–1351

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liao IC, Moutos FT, Estes BT, Zhao X, Guilak F (2013) Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage. Adv Funct Mater 23:5833–5839

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lima MJ et al (2014) Bottom-up approach to construct microfabricated multi-layer scaffolds for bone tissue engineering. Biomed Microdevices 16:69–78

    CAS  PubMed  Google Scholar 

  • Lin H et al (2008) The effect of crosslinking heparin to demineralized bone matrix on mechanical strength and specific binding to human bone morphogenetic protein-2. Biomaterials 29:1189–1197

    CAS  PubMed  Google Scholar 

  • Liu Tsang V et al (2007) Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J 21:790–801

    PubMed  Google Scholar 

  • Lu H et al (2009) Effect of cell density on adipogenic differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 381:322–327

    CAS  PubMed  Google Scholar 

  • Luz GM, Boesel L, del Campo A, Mano JF (2012) Micropatterning of bioactive glass nanoparticles on chitosan membranes for spatial controlled biomineralization. Langmuir 28:6970–6977

    CAS  PubMed  Google Scholar 

  • Marcenes W et al (2013) Global burden of oral conditions in 1990–2010: a systematic analysis. J Dent Res 92:592–597

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marijnissen WJ et al (2002) Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering. Biomaterials 23:1511–1517

    CAS  PubMed  Google Scholar 

  • Mauck RL et al (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122:252–260

    CAS  PubMed  Google Scholar 

  • McMillan RA, Caran KL, Apkarian RP, Conticello VP (1999) High-resolution topographic imaging of environmentally responsive, elastin-mimetic hydrogels. Macromolecules 32:9067–9070

    CAS  Google Scholar 

  • Meredith DO, Eschbach L, Riehle MO, Curtis AS, Richards RG (2007) Microtopography of metal surfaces influence fibroblast growth by modifying cell shape, cytoskeleton, and adhesion. J Orthop Res 25:1523–1533

    CAS  PubMed  Google Scholar 

  • Meseguer-Olmo L et al (2013) In-vivo behavior of Si-hydroxyapatite/polycaprolactone/DMB scaffolds fabricated by 3D printing. J Biomed Mater Res A 101:2038–2048

    PubMed  Google Scholar 

  • Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21:157–161

    CAS  PubMed  Google Scholar 

  • Mironov V, Kasyanov V, Drake C, Markwald RR (2008) Organ printing: promises and challenges. Regen Med 3:93–103

    CAS  PubMed  Google Scholar 

  • Miura M et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100:5807–5812

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moon JJ et al (2010a) Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31:3840–3847

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moon S et al (2010b) Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng Part C Methods 16:157–166

    PubMed Central  CAS  PubMed  Google Scholar 

  • Morgan JP et al (2013) Formation of microvascular networks in vitro. Nat Protoc 8:1820–1836

    PubMed  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    CAS  PubMed  Google Scholar 

  • Murray PE, Garcia-Godoy F, Hargreaves KM (2007) Regenerative endodontics: a review of current status and a call for action. J Endod 33:377–390

    PubMed  Google Scholar 

  • Nahmias Y, Schwartz RE, Verfaillie CM, Odde DJ (2005) Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol Bioeng 92:129–136

    CAS  PubMed  Google Scholar 

  • Nakamura M et al (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11:1658–1666

    CAS  PubMed  Google Scholar 

  • Nakao K et al (2007) The development of a bioengineered organ germ method. Nat Methods 4:227–230

    CAS  PubMed  Google Scholar 

  • Nedjari S et al (2014) Electrospun honeycomb as nests for controlled osteoblast spatial organization. Macromol Biosci 14:1580–1589

    Google Scholar 

  • Neves SC et al (2011) Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair. Biomaterials 32:1068–1079

    CAS  PubMed  Google Scholar 

  • Nguyen MK, Lee DS (2010) Injectable biodegradable hydrogels. Macromol Biosci 10:563–579

    CAS  PubMed  Google Scholar 

  • Nguyen LH, Kudva AK, Guckert NL, Linse KD, Roy K (2011) Unique biomaterial compositions direct bone marrow stem cells into specific chondrocytic phenotypes corresponding to the various zones of articular cartilage. Biomaterials 32:1327–1338

    CAS  PubMed  Google Scholar 

  • Nguyen LH et al (2012) Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng Part B Rev 18:363–382

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nikkhah M, Edalat F, Manoucheri S, Khademhosseini A (2012a) Engineering microscale topographies to control the cell-substrate interface. Biomaterials 33:5230–5246

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nikkhah M et al (2012b) Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials 33:9009–9018

    PubMed Central  CAS  PubMed  Google Scholar 

  • O’Connell DJ et al (2012) A Wnt-bmp feedback circuit controls intertissue signaling dynamics in tooth organogenesis. Sci Signal 5:ra4

    PubMed  Google Scholar 

  • Occhetta P et al (2013) Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning. Biofabrication 5:035002

    CAS  PubMed  Google Scholar 

  • Ohazama A, Modino SA, Miletich I, Sharpe PT (2004) Stem-cell-based tissue engineering of murine teeth. J Dent Res 83:518–522

    CAS  PubMed  Google Scholar 

  • Otsuka H et al (2012) Chondrocyte spheroids on microfabricated PEG hydrogel surface and their noninvasive functional monitoring. Sci Technol Adv Mater 13:064217

    Google Scholar 

  • Park TH, Shuler ML (2003) Integration of cell culture and microfabrication technology. Biotechnol Prog 19:243–253

    CAS  PubMed  Google Scholar 

  • Park CH et al (2014) Image-based, fiber guiding scaffolds: a platform for regenerating tissue interfaces. Tissue Eng Part C Methods 20:533–542

    PubMed Central  PubMed  Google Scholar 

  • Pelaez-Vargas A et al (2011) Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants. Dent Mater 27:581–589

    CAS  PubMed  Google Scholar 

  • Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    CAS  Google Scholar 

  • Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci U S A 89:9064–9068

    PubMed Central  CAS  PubMed  Google Scholar 

  • Petersen EF, Spencer RG, McFarland EW (2002) Microengineering neocartilage scaffolds. Biotechnol Bioeng 78:801–804

    CAS  PubMed  Google Scholar 

  • Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    CAS  PubMed  Google Scholar 

  • Polio SR, Rothenberg KE, Stamenovic D, Smith ML (2012) A micropatterning and image processing approach to simplify measurement of cellular traction forces. Acta Biomater 8:82–88

    PubMed Central  CAS  PubMed  Google Scholar 

  • Porter AE, Patel N, Skepper JN, Best SM, Bonfield W (2003) Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials 24:4609–4620

    CAS  PubMed  Google Scholar 

  • Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35:403–440

    CAS  Google Scholar 

  • Rape AD, Guo WH, Wang YL (2011) The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials 32:2043–2051

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rea SM, Best SM, Bonfield W (2004) Bioactivity of ceramic-polymer composites with varied composition and surface topography. J Mater Sci Mater Med 15:997–1005

    CAS  PubMed  Google Scholar 

  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    CAS  PubMed  Google Scholar 

  • Riehl BD, Park JH, Kwon IK, Lim JY (2012) Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. Tissue Eng Part B Rev 18:288–300

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez-Lozano FJ et al (2012) Mesenchymal dental stem cells in regenerative dentistry. Med Oral Patol Oral Cir Bucal 17:e1062–e1067

    PubMed Central  PubMed  Google Scholar 

  • Scaglione S et al (2014) A novel scaffold geometry for chondral applications: theoretical model and in vivo validation. Biotechnol Bioeng 111:2107–2119

    CAS  PubMed  Google Scholar 

  • Schiele NR et al (2010) Laser-based direct-write techniques for cell printing. Biofabrication 2:032001

    PubMed  Google Scholar 

  • Selimovic S, Oh J, Bae H, Dokmeci M, Khademhosseini A (2012) Microscale strategies for generating cell-encapsulating hydrogels. Polym (Basel) 4:1554

    CAS  Google Scholar 

  • Shao Y, Fu J (2014) Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective. Adv Mater 26:1494–1533

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma B et al (2007) Designing zonal organization into tissue-engineered cartilage. Tissue Eng 13:405–414

    CAS  PubMed  Google Scholar 

  • Shin SR et al (2013) Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7:2369–2380

    PubMed Central  CAS  PubMed  Google Scholar 

  • Simonds RJ et al (1992) Transmission of human immunodeficiency virus type 1 from a seronegative organ and tissue donor. N Engl J Med 326:726–732

    CAS  PubMed  Google Scholar 

  • Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329

    PubMed Central  CAS  PubMed  Google Scholar 

  • Slivka MA, Leatherbury NC, Kieswetter K, Niederauer GG (2001) Porous, resorbable, fiber-reinforced scaffolds tailored for articular cartilage repair. Tissue Eng 7:767–780

    CAS  PubMed  Google Scholar 

  • Song YS et al (2010) Vitrification and levitation of a liquid droplet on liquid nitrogen. Proc Natl Acad Sci U S A 107:4596–4600

    PubMed Central  CAS  PubMed  Google Scholar 

  • Song W, Lu H, Kawazoe N, Chen G (2011) Gradient patterning and differentiation of mesenchymal stem cells on micropatterned polymer surface. J Bioact Compat Polym 26:242–256

    CAS  Google Scholar 

  • Spiller KL, Maher SA, Lowman AM (2011) Hydrogels for the repair of articular cartilage defects. Tissue Eng Part B Rev 17:281–299

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sumita Y et al (2006) Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering. Biomaterials 27:3238–3248

    CAS  PubMed  Google Scholar 

  • Sunnegardh-Gronberg K et al (2012) Treatment of adult patients with partial edentulism: a systematic review. Int J Prosthodont 25:568–581

    PubMed  Google Scholar 

  • Tabata Y (2009) Biomaterial technology for tissue engineering applications. J R Soc Interface 6(Suppl 3):S311–S324

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tan R, Niu X, Gan S, Feng Q (2009) Preparation and characterization of an injectable composite. J Mater Sci Mater Med 20:1245–1253

    CAS  PubMed  Google Scholar 

  • Tasoglu S, Demirci U (2013) Bioprinting for stem cell research. Trends Biotechnol 31:10–19

    PubMed Central  CAS  PubMed  Google Scholar 

  • Torisawa Y-S, Mosadegh B, Cavnar SP, Ho M, Takayama S (2010) Transwells with microstamped membranes produce micropatterned two-dimensional and three-dimensional co-cultures. Tissue Eng Part C Methods 17:61–67

    PubMed Central  PubMed  Google Scholar 

  • Torricelli P, Fini M, Rocca M, Giavaresi G, Giardino R (1999) Xenogenic demineralized bone matrix: osteoinduction and influence of associated skeletal defects in heterotopic bone formation in rats. Int Orthop 23:178–181

    PubMed Central  CAS  PubMed  Google Scholar 

  • Turunen S, Haaparanta AM, Aanismaa R, Kellomaki M (2013) Chemical and topographical patterning of hydrogels for neural cell guidance in vitro. J Tissue Eng Regen Med 7:253–270

    CAS  PubMed  Google Scholar 

  • Vanapalli SA, Duits MH, Mugele F (2009) Microfluidics as a functional tool for cell mechanics. Biomicrofluidics 3:12006

    PubMed  Google Scholar 

  • Volponi AA, Pang Y, Sharpe PT (2010) Stem cell-based biological tooth repair and regeneration. Trends Cell Biol 20:715–722

    CAS  PubMed  Google Scholar 

  • Wang X, Song W, Kawazoe N, Chen G (2013) The osteogenic differentiation of mesenchymal stem cells by controlled cell-cell interaction on micropatterned surfaces. J Biomed Mater Res A 101:3388–3395

    PubMed  Google Scholar 

  • Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Ann Rev Mater Sci 28:271–298

    CAS  Google Scholar 

  • Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    CAS  PubMed  Google Scholar 

  • Xu F et al (2010) A droplet-based building block approach for bladder smooth muscle cell (SMC) proliferation. Biofabrication 2:014105

    CAS  PubMed  Google Scholar 

  • Xu T et al (2013) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5:015001

    PubMed  Google Scholar 

  • Yasuda K et al (2005) Biomechanical properties of high-toughness double network hydrogels. Biomaterials 26:4468–4475

    CAS  PubMed  Google Scholar 

  • Yen AH, Sharpe PT (2008) Stem cells and tooth tissue engineering. Cell Tissue Res 331:359–372

    CAS  PubMed  Google Scholar 

  • Yu T, Ober CK (2003) Methods for the topographical patterning and patterned surface modification of hydrogels based on hydroxyethyl methacrylate. Biomacromolecules 4:1126–1131

    CAS  PubMed  Google Scholar 

  • Yu J, Shi J, Jin Y (2008) Current approaches and challenges in making a bio-tooth. Tissue Eng Part B Rev 14:307–319

    CAS  PubMed  Google Scholar 

  • Zorlutuna P et al (2012) Microfabricated biomaterials for engineering 3D tissues. Adv Mater 24:1782–1804

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard Maas Ph.D. or Mehdi Nikkhah Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, CC., Kharaziha, M., Min, C., Maas, R., Nikkhah, M. (2015). Microfabrication of Cell-Laden Hydrogels for Engineering Mineralized and Load Bearing Tissues. In: Bertassoni, L., Coelho, P. (eds) Engineering Mineralized and Load Bearing Tissues. Advances in Experimental Medicine and Biology, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-319-22345-2_2

Download citation

Publish with us

Policies and ethics