Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 881))

Abstract

The unique anatomy and composition of the periodontium make periodontal tissue healing and regeneration a complex process. Periodontal regeneration aims to recapitulate the crucial stages of wound healing associated with periodontal development in order to restore lost tissues to their original form and function and for regeneration to occur, healing events must progress in an ordered and programmed sequence both temporally and spatially, replicating key developmental events. A number of procedures have been employed to promote true and predictable regeneration of the periodontium. Principally, the approaches are based on the use of graft materials to compensate for the bone loss incurred as a result of periodontal disease, use of barrier membranes for guided tissue regeneration and use of bioactive molecules. More recently, the concept of tissue engineering has been integrated into research and applications of regenerative dentistry, including periodontics, to aim to manage damaged and lost oral tissues, through reconstruction and regeneration of the periodontium and alleviate the shortcomings of more conventional therapeutic options. The essential components for generating effective cellular based therapeutic strategies include a population of multi-potential progenitor cells, presence of signalling molecules/inductive morphogenic signals and a conductive extracellular matrix scaffold or appropriate delivery system. Mesenchymal stem cells are considered suitable candidates for cell-based tissue engineering strategies owing to their extensive expansion rate and potential to differentiate into cells of multiple organs and systems. Mesenchymal stem cells derived from multiple tissue sources have been investigated in pre-clinical animal studies and clinical settings for the treatment and regeneration of the periodontium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aichelmann-Reidy ME, Yukna RA (1998) Bone replacement grafts. The bone substitutes. Dent Clin N Am 42:491–503

    CAS  PubMed  Google Scholar 

  • Akizuki T, Oda S, Komaki M et al (2005) Application of periodontal ligament cell sheet for periodontal regeneration: a pilot study in beagle dogs. J Periodontal Res 40:245–251

    PubMed  Google Scholar 

  • Arthur A, Zannettino A, Gronthos S (2008) The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 218:237–245

    Google Scholar 

  • Aukhil I (2000) Biology of wound healing. Periodontol 2000 22:44–50

    CAS  PubMed  Google Scholar 

  • Bartold PM (2006) Periodontal tissues in health and disease: introduction. Periodontol 2000 40:7–10

    PubMed  Google Scholar 

  • Bartold PM, Narayanan AS (1998) Periodontal regeneration: biology of the periodontal connective tissues. Quintessence Publishing, Chicago

    Google Scholar 

  • Bartold PM, Narayanan AS (2006) Molecular and cell biology of healthy and diseased periodontal tissues. Periodontol 2000 40:29–49

    PubMed  Google Scholar 

  • Bartold PM, McCulloch CA, Narayanan AS, Pitaru S (2000) Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000 24:253–269

    CAS  PubMed  Google Scholar 

  • Bartold PM, Marshall RI, Haynes DR (2005) Periodontitis and rheumatoid arthritis: a review. J Periodontol 76:2066–2074

    CAS  PubMed  Google Scholar 

  • Bartold PM, Xiao Y, Lyngstaadas SP, Paine ML, Snead ML (2006) Principles and applications of cell delivery systems for periodontal regeneration. Periodontol 2000 41:123–135

    PubMed  Google Scholar 

  • Becker W, Becker BE, Berg L, Prichard J, Caffesse R, Rosenberg E (1988) New attachment after treatment with root isolation procedures: report for treated class III and class II furcations and vertical osseous defects. Int J Periodontics Restorative Dent 8:8–23

    CAS  PubMed  Google Scholar 

  • Beertsen W, McCulloch CA, Sodek J (1997) The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 13:20–40

    CAS  PubMed  Google Scholar 

  • Beltrao-Braga PI, Pignatari GC, Maiorka PC et al (2011) Feeder-free derivation of induced pluripotent stem cells from human immature dental pulp stem cells. Cell Transplant 20:1707–1719

    Google Scholar 

  • Bergstrom J (2004) Tobacco smoking and chronic destructive periodontal disease. Odontology 92:1–8

    CAS  PubMed  Google Scholar 

  • Berkovitz BK (1990) The structure of the periodontal ligament: an update. Eur J Orthod 12:51–76

    CAS  PubMed  Google Scholar 

  • Bianco P, Kuznetsov SA, Riminucci M, Gehron RP (2006) Postnatal skeletal stem cells. Methods Enzymol 419:117–148

    CAS  PubMed  Google Scholar 

  • Blau HM, Brazelton TR, Weimann JM (2001) The evolving concept of a stem cell: entity or function? Cell 105:829–841

    CAS  PubMed  Google Scholar 

  • Bongso A, Fong CY, Gauthaman K (2008) Taking stem cells to the clinic: major challenges. J Cell Biochem 105:1352–1360

    CAS  PubMed  Google Scholar 

  • Boskey AL (1996) Matrix proteins and mineralization: an overview. Connect Tissue Res 35:357–363

    CAS  PubMed  Google Scholar 

  • Bosshardt DD (2008) Biological mediators and periodontal regeneration: a review of enamel matrix proteins at the cellular and molecular levels. J Clin Periodontol 35:87–105

    CAS  PubMed  Google Scholar 

  • Bosshardt DD, Selvig KA (1997) Dental cementum: the dynamic tissue covering of the root. Periodontol 2000 13:41–75

    CAS  PubMed  Google Scholar 

  • Bosshardt DD, Zalzal S, McKee MD, Nanci A (1998) Developmental appearance and distribution of bone sialoprotein and osteopontin in human and rat cementum. Anat Rec 250:13–33

    CAS  PubMed  Google Scholar 

  • Boyko GA, Melcher AH, Brunette DM (1981) Formation of new periodontal ligament by periodontal ligament cells implanted in vivo after culture in vitro. A preliminary study of transplanted roots in the dog. J Periodontal Res 16:73–88

    CAS  PubMed  Google Scholar 

  • Bratthall G, Soderholm G, Neiderud AM, Kullendorff B, Edwardsson S, Attstrom R (1998) Guided tissue regeneration in the treatment of human infrabony defects. Clinical, radiographical and microbiological results: a pilot study. J Clin Periodontol 25:908–914

    CAS  PubMed  Google Scholar 

  • Bruder SP, Kraus KH, Goldberg VM, Kadiyala S (1998) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 80:985–996

    CAS  PubMed  Google Scholar 

  • Caplan AI (2005) Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11:1198–1211

    CAS  PubMed  Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    CAS  PubMed  Google Scholar 

  • Cate AR (1975) Formation of supporting bone in association with periodontal ligament organization in the mouse. Arch Oral Biol 20:137–138

    CAS  PubMed  Google Scholar 

  • Caton J, Nyman S, Zander H (1980) Histometric evaluation of periodontal surgery. II. Connective tissue attachment levels after four regenerative procedures. J Clin Periodontol 7:224–231

    CAS  PubMed  Google Scholar 

  • Chen YL, Chen PK, Jeng LB et al (2008) Periodontal regeneration using ex vivo autologous stem cells engineered to express the BMP-2 gene: an alternative to alveolaplasty. Gene Ther 15:1469–1477

    CAS  PubMed  Google Scholar 

  • Chen FM, Zhang J, Zhang M, An Y, Chen F, Wu ZF (2010) A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials 31:7892–7927

    CAS  PubMed  Google Scholar 

  • Chung VH, Chen AY, Kwan CC, Chen PK, Chang SC (2011) Mandibular alveolar bony defect repair using bone morphogenetic protein 2-expressing autologous mesenchymal stem cells. J Craniofac Surg 22:450–454

    PubMed  Google Scholar 

  • Colter DC, Sekiya I, Prockop DJ (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci U S A 98:7841–7845

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cordeiro MM, Dong Z, Kaneko T et al (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34:962–969

    PubMed  Google Scholar 

  • Cortellini P, Pini Prato G, Baldi C, Clauser C (1990) Guided tissue regeneration with different materials. Int J Periodontics Restorative Dent 10:136–151

    CAS  PubMed  Google Scholar 

  • Costa PF, Vaquette C, Zhang Q, Reis RL, Ivanovski S, Hutmacher DW (2014) Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure. J Clin Periodontol 41:283–294

    CAS  PubMed  Google Scholar 

  • Creeper F, Lichanska AM, Marshall RI, Seymour GJ, Ivanovski S (2009) The effect of platelet-rich plasma on osteoblast and periodontal ligament cell migration, proliferation and differentiation. J Periodontal Res 44:258–265

    CAS  PubMed  Google Scholar 

  • d’Aquino R, De Rosa A, Lanza V et al (2009) Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 18:75–83

    PubMed  Google Scholar 

  • Derubeis AR, Cancedda R (2004) Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Ann Biomed Eng 32:160–165

    PubMed  Google Scholar 

  • Ding G, Liu Y, Wang W et al (2010) Allogeneic periodontal ligament stem cell therapy for periodontitis in swine. Stem Cells 28:1829–1838

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dormer NH, Berkland CJ, Detamore MS (2010) Emerging techniques in stratified designs and continuous gradients for tissue engineering of interfaces. Ann Biomed Eng 38:2121–2141

    PubMed Central  PubMed  Google Scholar 

  • Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485

    CAS  PubMed  Google Scholar 

  • Duailibi SE, Duailibi MT, Vacanti JP, Yelick PC (2006) Prospects for tooth regeneration. Periodontol 2000 41:177–187

    PubMed  Google Scholar 

  • Duan X, Tu Q, Zhang J et al (2011) Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. J Cell Physiol 226:150–157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Egusa H, Okita K, Kayashima H et al (2010) Gingival fibroblasts as a promising source of induced pluripotent stem cells. PLoS One 5:e12743

    PubMed Central  PubMed  Google Scholar 

  • Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242

    CAS  PubMed  Google Scholar 

  • Esposito M, Coulthard P, Worthington HV (2003) Enamel matrix derivative (Emdogain®) for periodontal tissue regeneration in intrabony defects. Cochrane Database Syst Rev 2003(2). Art. No.: CD003875. doi:10.1002/14651858.CD003875

  • Feng F, Akiyama K, Liu Y et al (2010) Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases. Oral Dis 16:20–28

    PubMed Central  CAS  PubMed  Google Scholar 

  • Friedenstein AJ (1976) Precursor cells of mechanocytes. Int Rev Cytol 47:327–359

    CAS  PubMed  Google Scholar 

  • Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390

    CAS  PubMed  Google Scholar 

  • Garraway R, Young WG, Daley T, Harbrow D, Bartold PM (1998) An assessment of the osteoinductive potential of commercial demineralized freeze-dried bone in the murine thigh muscle implantation model. J Periodontol 69:1325–1336

    CAS  PubMed  Google Scholar 

  • Gault P, Black A, Romette JL et al (2010) Tissue-engineered ligament: implant constructs for tooth replacement. J Clin Periodontol 37:750–758

    PubMed  Google Scholar 

  • Gottlow J, Nyman S, Karring T, Lindhe J (1984) New attachment formation as the result of controlled tissue regeneration. J Clin Periodontol 11:494–503

    CAS  PubMed  Google Scholar 

  • Gottlow J, Nyman S, Lindhe J, Karring T, Wennstrom J (1986) New attachment formation in the human periodontium by guided tissue regeneration. Case reports. J Clin Periodontol 13:604–616

    CAS  PubMed  Google Scholar 

  • Gould TR, Melcher AH, Brunette DM (1980) Migration and division of progenitor cell populations in periodontal ligament after wounding. J Periodontal Res 15:20–42

    CAS  PubMed  Google Scholar 

  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gronthos S, Brahim J, Li W et al (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535

    CAS  PubMed  Google Scholar 

  • Gronthos S, Zannettino AC, Hay SJ et al (2003a) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116:1827–1835

    CAS  PubMed  Google Scholar 

  • Gronthos S, Chen S, Wang CY, Robey PG, Shi S (2003b) Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin. J Bone Miner Res 18:716–722

    CAS  PubMed  Google Scholar 

  • Guo W, He Y, Zhang X et al (2009) The use of dentin matrix scaffold and dental follicle cells for dentin regeneration. Biomaterials 30:6708–6723

    CAS  PubMed  Google Scholar 

  • Guo W, Gong K, Shi H et al (2011) Dental follicle cells and treated dentin matrix scaffold for tissue engineering the tooth root. Biomaterials 33(5):1291–1302

    Google Scholar 

  • Hammarstrom L, Alatli I, Fong CD (1996) Origins of cementum. Oral Dis 2:63–69

    CAS  PubMed  Google Scholar 

  • Han JY, Hong EK, Choi BG et al (2003) Death receptor 5 and Bcl-2 protein expression as predictors of tumor response to gemcitabine and cisplatin in patients with advanced non-small-cell lung cancer. Med Oncol 20:355–362

    CAS  PubMed  Google Scholar 

  • Handa K, Saito M, Tsunoda A et al (2002a) Progenitor cells from dental follicle are able to form cementum matrix in vivo. Connect Tissue Res 43:406–408

    PubMed  Google Scholar 

  • Handa K, Saito M, Yamauchi M et al (2002b) Cementum matrix formation in vivo by cultured dental follicle cells. Bone 31:606–611

    CAS  PubMed  Google Scholar 

  • Hasegawa M, Yamato M, Kikuchi A, Okano T, Ishikawa I (2005) Human periodontal ligament cell sheets can regenerate periodontal ligament tissue in an athymic rat model. Tissue Eng 11:469–478

    CAS  PubMed  Google Scholar 

  • Hasegawa N, Kawaguchi H, Hirachi A et al (2006) Behavior of transplanted bone marrow-derived mesenchymal stem cells in periodontal defects. J Periodontol 77:1003–1007

    PubMed  Google Scholar 

  • Hirooka H (1998) The biologic concept for the use of enamel matrix protein: true periodontal regeneration. Quintessence Int 29:621–630

    CAS  PubMed  Google Scholar 

  • Ho AD, Wagner W, Franke W (2008) Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy 10:320–330

    CAS  PubMed  Google Scholar 

  • Horwitz EM, Prockop DJ, Fitzpatrick LA et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313

    CAS  PubMed  Google Scholar 

  • Hughes FJ, Ghuman M, Talal A (2010) Periodontal regeneration: a challenge for the tissue engineer? Proc Inst Mech Eng H 224:1345–1358

    CAS  PubMed  Google Scholar 

  • Hutmacher DW, Cool S (2007) Concepts of scaffold-based tissue engineering – the rationale to use solid free-form fabrication techniques. J Cell Mol Med 11:654–669

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hynes K, Menicanin D, Gronthos S, Bartold PM (2012) Clinical utility of stem cells for periodontal regeneration. Periodontol 2000 59:203–227

    PubMed  Google Scholar 

  • Hynes K, Menicanin D, Han J et al (2013) Mesenchymal stem cells from iPS cells facilitate periodontal regeneration. J Dent Res 92:833–839

    CAS  PubMed  Google Scholar 

  • Hynes K, Menicanin D, Mrozik K, Gronthos S, Bartold PM (2014) Generation of functional mesenchymal stem cells from different induced pluripotent stem cell lines. Stem Cells Dev 23:1084–1096

    PubMed Central  CAS  PubMed  Google Scholar 

  • Isaka J, Ohazama A, Kobayashi M et al (2001) Participation of periodontal ligament cells with regeneration of alveolar bone. J Periodontol 72:314–323

    CAS  PubMed  Google Scholar 

  • Ivanovski S (2009) Periodontal regeneration. Aust Dent J 54(Suppl 1):S118–S128

    PubMed  Google Scholar 

  • Ivanovski S, Vaquette C, Gronthos S, Hutmacher DW, Bartold PM (2014) Multiphasic scaffolds for periodontal tissue engineering. J Dent Res 93:1212–1221

    CAS  PubMed  Google Scholar 

  • Iwata T, Yamato M, Tsuchioka H et al (2009) Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model. Biomaterials 30:2716–2723

    CAS  PubMed  Google Scholar 

  • Jepsen S, Heinz B, Jepsen K et al (2004) A randomized clinical trial comparing enamel matrix derivative and membrane treatment of buccal class II furcation involvement in mandibular molars. Part I: study design and results for primary outcomes. J Periodontol 75:1150–1160

    PubMed  Google Scholar 

  • Jernvall J, Thesleff I (2000) Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 92:19–29

    CAS  PubMed  Google Scholar 

  • Ji YM, Jeon SH, Park JY, Chung JH, Choung YH, Choung PH (2010) Dental stem cell therapy with calcium hydroxide in dental pulp capping. Tissue Eng Part A 16:1823–1833

    CAS  PubMed  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    CAS  PubMed  Google Scholar 

  • Kaigler D, Pagni G, Park CH et al (2013) Stem cell therapy for craniofacial bone regeneration: a randomized, controlled feasibility trial. Cell Transplant 22:767–777

    PubMed Central  PubMed  Google Scholar 

  • Karring T, Nyman S, Gottlow J, Laurell L (1993) Development of the biological concept of guided tissue regeneration – animal and human studies. Periodontol 2000 1:26–35

    Google Scholar 

  • Kawaguchi H, Hirachi A, Hasegawa N et al (2004) Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. J Periodontol 75:1281–1287

    PubMed  Google Scholar 

  • Kim SH, Kim KH, Seo BM et al (2009) Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: a pilot study. J Periodontol 80:1815–1823

    PubMed  Google Scholar 

  • Kode JA, Mukherjee S, Joglekar MV, Hardikar AA (2009) Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 11:377–391

    CAS  PubMed  Google Scholar 

  • Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG (2001) Circulating skeletal stem cells. J Cell Biol 153:1133–1140

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lai HC, Zhuang LF, Liu X, Wieland M, Zhang ZY, Zhang ZY (2010) The influence of surface energy on early adherent events of osteoblast on titanium substrates. J Biomed Mater Res A 93:289–296

    PubMed  Google Scholar 

  • Lam CX, Hutmacher DW, Schantz JT, Woodruff MA, Teoh SH (2009) Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res A 90:906–919

    PubMed  Google Scholar 

  • Lang H, Schuler N, Arnhold S, Nolden R, Mertens T (1995) Formation of differentiated tissues in vivo by periodontal cell populations cultured in vitro. J Dent Res 74:1219–1225

    CAS  PubMed  Google Scholar 

  • Lang H, Schuler N, Nolden R (1998) Attachment formation following replantation of cultured cells into periodontal defects – a study in minipigs. J Dent Res 77:393–405

    CAS  PubMed  Google Scholar 

  • Lee H, Park J, Forget BG, Gaines P (2009) Induced pluripotent stem cells in regenerative medicine: an argument for continued research on human embryonic stem cells. Regen Med 4:759–769

    PubMed  Google Scholar 

  • Lekic PC, Rajshankar D, Chen H, Tenenbaum H, McCulloch CA (2001) Transplantation of labeled periodontal ligament cells promotes regeneration of alveolar bone. Anat Rec 262:193–202

    CAS  PubMed  Google Scholar 

  • Li H, Yan F, Lei L, Li Y, Xiao Y (2009a) Application of autologous cryopreserved bone marrow mesenchymal stem cells for periodontal regeneration in dogs. Cells Tissues Organs 190:94–101

    PubMed  Google Scholar 

  • Li B, Chen X, Guo B, Wang X, Fan H, Zhang X (2009b) Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Acta Biomater 5:134–143

    CAS  PubMed  Google Scholar 

  • Li R, Guo W, Yang B et al (2011) Human treated dentin matrix as a natural scaffold for complete human dentin tissue regeneration. Biomaterials 32:4525–4538

    CAS  PubMed  Google Scholar 

  • Lickorish D, Ramshaw JA, Werkmeister JA, Glattauer V, Howlett CR (2004) Collagen-hydroxyapatite composite prepared by biomimetic process. J Biomed Mater Res A 68:19–27

    PubMed  Google Scholar 

  • Lim JY, Shaughnessy MC, Zhou Z, Noh H, Vogler EA, Donahue HJ (2008) Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials 29:1776–1784

    CAS  PubMed  Google Scholar 

  • Lin NH, Gronthos S, Bartold PM (2008) Stem cells and periodontal regeneration. Aust Dent J 53:108–121

    PubMed  Google Scholar 

  • Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486

    PubMed  Google Scholar 

  • Liu HW, Yacobi R, Savion N, Narayanan AS, Pitaru S (1997) A collagenous cementum-derived attachment protein is a marker for progenitors of the mineralized tissue-forming cell lineage of the periodontal ligament. J Bone Miner Res 12:1691–1699

    CAS  PubMed  Google Scholar 

  • Liu Y, Zheng Y, Ding G et al (2008) Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells 26:1065–1073

    PubMed Central  PubMed  Google Scholar 

  • Lynch SE, de Castilla GR, Williams RC et al (1991) The effects of short-term application of a combination of platelet-derived and insulin-like growth factors on periodontal wound healing. J Periodontol 62:458–467

    CAS  PubMed  Google Scholar 

  • MacNeil RL, Somerman MJ (1999) Development and regeneration of the periodontium: parallels and contrasts. Periodontol 2000 19:8–20

    CAS  PubMed  Google Scholar 

  • MacNeil RL, Thomas HF (1993) Development of the murine periodontium. II. Role of the epithelial root sheath in formation of the periodontal attachment. J Periodontol 64:285–291

    CAS  PubMed  Google Scholar 

  • Matias MA, Li H, Young WG, Bartold PM (2003) Immunohistochemical localisation of extracellular matrix proteins in the periodontium during cementogenesis in the rat molar. Arch Oral Biol 48:709–716

    CAS  PubMed  Google Scholar 

  • McCulloch CA, Lekic P, McKee MD (2000) Role of physical forces in regulating the form and function of the periodontal ligament. Periodontol 2000 24:56–72

    CAS  PubMed  Google Scholar 

  • Melcher AH (1976) On the repair potential of periodontal tissues. J Periodontol 47:256–260

    CAS  PubMed  Google Scholar 

  • Menicanin D, Bartold PM, Zannettino AC, Gronthos S (2010) Identification of a common gene expression signature associated with immature clonal mesenchymal cell populations derived from bone marrow and dental tissues. Stem Cells Dev 19:1501–1510

    CAS  PubMed  Google Scholar 

  • Michalowicz BS, Diehl SR, Gunsolley JC et al (2000) Evidence of a substantial genetic basis for risk of adult periodontitis. J Periodontol 71:1699–1707

    CAS  PubMed  Google Scholar 

  • Miura M, Gronthos S, Zhao M et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100:5807–5812

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miyoshi K, Tsuji D, Kudoh K et al (2010) Generation of human induced pluripotent stem cells from oral mucosa. J Biosci Bioeng 110:345–350

    CAS  PubMed  Google Scholar 

  • Morsczeck C, Gotz W, Schierholz J et al (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165

    CAS  PubMed  Google Scholar 

  • Murphy KG (1995) Postoperative healing complications associated with gore-tex periodontal Material. Part I. Incidence and characterization. Int J Periodontics Restorative Dent 15:363–375

    CAS  PubMed  Google Scholar 

  • Murphy WL, Mooney DJ (1999) Controlled delivery of inductive proteins, plasmid DNA and cells from tissue engineering matrices. J Periodontal Res 34:413–419

    CAS  PubMed  Google Scholar 

  • Nakae H, Narayanan AS, Raines E, Page RC (1991) Isolation and partial characterization of mitogenic factors from cementum. Biochemistry 30:7047–7052

    CAS  PubMed  Google Scholar 

  • Nakahara T, Nakamura T, Kobayashi E et al (2003) Novel approach to regeneration of periodontal tissues based on in situ tissue engineering: effects of controlled release of basic fibroblast growth factor from a sandwich membrane. Tissue Eng 9:153–162

    CAS  PubMed  Google Scholar 

  • Nakashima M (2005) Tissue engineering in endodontics. Aust Endod J 31:111–113

    PubMed  Google Scholar 

  • Nakashima M, Akamine A (2005) The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod 31:711–718

    PubMed  Google Scholar 

  • Nakashima M, Reddi AH (2003) The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol 21:1025–1032

    CAS  PubMed  Google Scholar 

  • Nanci A (2003) Periodontium, ten Cate’s oral histology: development, structure and function. CV Mosby, St. Louis, pp 240–274

    Google Scholar 

  • Nanci A, Bosshardt DD (2006) Structure of periodontal tissues in health and disease. Periodontol 2000 40:11–28

    PubMed  Google Scholar 

  • Narayanan AS, Bartold PM (1996) Biochemistry of periodontal connective tissues and their regeneration: a current perspective. Connect Tissue Res 34:191–201

    CAS  PubMed  Google Scholar 

  • Nikolopoulos S, Peteinaki E, Castanas E (2002) Immunologic effects of emdogain in humans: one-year results. Int J Periodontics Restorative Dent 22:269–277

    PubMed  Google Scholar 

  • Nyman S, Gottlow J, Karring T, Lindhe J (1982a) The regenerative potential of the periodontal ligament. An experimental study in the monkey. J Clin Periodontol 9:257–265

    CAS  PubMed  Google Scholar 

  • Nyman S, Lindhe J, Karring T, Rylander H (1982b) New attachment following surgical treatment of human periodontal disease. J Clin Periodontol 9:290–296

    CAS  PubMed  Google Scholar 

  • Oda Y, Yoshimura Y, Ohnishi H et al (2010) Induction of pluripotent stem cells from human third molar mesenchymal stromal cells. J Biol Chem 285:29270–29278

    PubMed Central  CAS  PubMed  Google Scholar 

  • Owen GR, Jackson J, Chehroudi B, Burt H, Brunette DM (2005) A PLGA membrane controlling cell behaviour for promoting tissue regeneration. Biomaterials 26:7447–7456

    CAS  PubMed  Google Scholar 

  • Park JY, Jeon SH, Choung PH (2011) Efficacy of periodontal stem cell transplantation in the treatment of advanced periodontitis. Cell Transplant 20:271–285

    PubMed  Google Scholar 

  • Pereira RF, Halford KW, O’Hara MD et al (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci U S A 92:4857–4861

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perez RA, Ginebra MP (2013) Injectable collagen/alpha-tricalcium phosphate cement: collagen-mineral phase interactions and cell response. J Mater Sci Mater Med 24:381–393

    CAS  PubMed  Google Scholar 

  • Petersen BE, Bowen WC, Patrene KD et al (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170

    CAS  PubMed  Google Scholar 

  • Phinney DG (2007) Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle 6:2884–2889

    CAS  PubMed  Google Scholar 

  • Pieri F, Lucarelli E, Corinaldesi G et al (2009) Effect of mesenchymal stem cells and platelet-rich plasma on the healing of standardized bone defects in the alveolar ridge: a comparative histomorphometric study in minipigs. J Oral Maxillofac Surg 67:265–272

    PubMed  Google Scholar 

  • Pihlstrom BL, Michalowicz BS, Johnson NW (2005) Periodontal diseases. Lancet 366:1809–1820

    PubMed  Google Scholar 

  • Pispa J, Thesleff I (2003) Mechanisms of ectodermal organogenesis. Dev Biol 262:195–205

    CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    CAS  PubMed  Google Scholar 

  • Pontoriero R, Lindhe J (1995) Guided tissue regeneration in the treatment of degree III furcation defects in maxillary molars. J Clin Periodontol 22:810–812

    CAS  PubMed  Google Scholar 

  • Portmann-Lanz CB, Schoeberlein A, Huber A et al (2006) Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol 194:664–673

    CAS  PubMed  Google Scholar 

  • Qu Z, Rausch-Fan X, Wieland M, Matejka M, Schedle A (2007) The initial attachment and subsequent behavior regulation of osteoblasts by dental implant surface modification. J Biomed Mater Res A 82:658–668

    PubMed  Google Scholar 

  • Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL, Gunsolley JC (2003) The efficacy of bone replacement grafts in the treatment of periodontal osseous defects. A systematic review. Ann Periodontol 8:227–265

    PubMed  Google Scholar 

  • Ribeiro FV, Casarin RC, Junior FH, Sallum EA, Casati MZ (2011) The role of enamel matrix derivative protein in minimally invasive surgery in treating intrabony defects in single-rooted teeth: a randomized clinical trial. J Periodontol 82:522–532

    PubMed  Google Scholar 

  • Ripamonti U, Reddi AH (1994) Periodontal regeneration: potential role of bone morphogenetic proteins. J Periodontal Res 29:225–235

    CAS  PubMed  Google Scholar 

  • Roberts-Thomson KF, Do L (2007) Gum diseases. In: Slade GD, Spencer AJ, Roberts-Thomson KF (eds) Australia’s dental generations: the National Survey of Adult Oral Health 2004–06, vol 34, Dental Statistics and Research. Australian Institute of Health and Welfare, Canberra, pp 118–136

    Google Scholar 

  • Rutherford RB, Ryan ME, Kennedy JE, Tucker MM, Charette MF (1993) Platelet-derived growth factor and dexamethasone combined with a collagen matrix induce regeneration of the periodontium in monkeys. J Clin Periodontol 20:537–544

    CAS  PubMed  Google Scholar 

  • Sachar A, Strom TA, San Miguel S, Serrano MJ, Svoboda KK, Liu X (2014) Cell-matrix and cell-cell interactions of human gingival fibroblasts on three-dimensional nanofibrous gelatin scaffolds. J Tissue Eng Regen Med 8:862–873

    CAS  PubMed  Google Scholar 

  • Saffar JL, Lasfargues JJ, Cherruau M (1997) Alveolar bone and the alveolar process: the socket that is never stable. Periodontol 2000 13:76–90

    CAS  PubMed  Google Scholar 

  • Sakai VT, Zhang Z, Dong Z et al (2010) SHED differentiate into functional odontoblasts and endothelium. J Dent Res 89:791–796

    CAS  PubMed  Google Scholar 

  • Scannapieco FA, Bush RB, Paju S (2003) Associations between periodontal disease and risk for atherosclerosis, cardiovascular disease, and stroke. A systematic review. Ann Periodontol 8:38–53

    PubMed  Google Scholar 

  • Sculean A, Schwarz F, Chiantella GC et al (2007) Five-year results of a prospective, randomized, controlled study evaluating treatment of intra-bony defects with a natural bone mineral and GTR. J Clin Periodontol 34:72–77

    PubMed  Google Scholar 

  • Sculean A, Windisch P, Szendroi-Kiss D et al (2008a) Clinical and histologic evaluation of an enamel matrix derivative combined with a biphasic calcium phosphate for the treatment of human intrabony periodontal defects. J Periodontol 79:1991–1999

    PubMed  Google Scholar 

  • Sculean A, Kiss A, Miliauskaite A, Schwarz F, Arweiler NB, Hannig M (2008b) Ten-year results following treatment of intra-bony defects with enamel matrix proteins and guided tissue regeneration. J Clin Periodontol 35:817–824

    PubMed  Google Scholar 

  • Selvig KA, Kersten BG, Chamberlain AD, Wikesjo UM, Nilveus RE (1992) Regenerative surgery of intrabony periodontal defects using ePTFE barrier membranes: scanning electron microscopic evaluation of retrieved membranes versus clinical healing. J Periodontol 63:974–978

    CAS  PubMed  Google Scholar 

  • Seo BM, Miura M, Gronthos S et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    CAS  PubMed  Google Scholar 

  • Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S (2005) The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 8:191–199

    CAS  PubMed  Google Scholar 

  • Shue L, Yufeng Z, Mony U (2012) Biomaterials for periodontal regeneration: a review of ceramics and polymers. Biomatter 2:271–277

    PubMed Central  PubMed  Google Scholar 

  • Simsek SB, Keles GC, Baris S, Cetinkaya BO (2010) Comparison of mesenchymal stem cells and autogenous cortical bone graft in the treatment of class II furcation defects in dogs. Clin Oral Investig 16: 251–258

    Google Scholar 

  • Slavkin HC, Bringas P Jr, Bessem C et al (1989) Hertwig’s epithelial root sheath differentiation and initial cementum and bone formation during long-term organ culture of mouse mandibular first molars using serumless, chemically-defined medium. J Periodontal Res 24:28–40

    CAS  PubMed  Google Scholar 

  • Smith JR, Pochampally R, Perry A, Hsu SC, Prockop DJ (2004) Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem Cells 22:823–831

    PubMed  Google Scholar 

  • Soncini M, Vertua E, Gibelli L et al (2007) Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 1:296–305

    CAS  PubMed  Google Scholar 

  • Sonoyama W, Liu Y, Fang D et al (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1:e79

    PubMed Central  PubMed  Google Scholar 

  • Sonoyama W, Liu Y, Yamaza T et al (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34:166–171

    PubMed Central  PubMed  Google Scholar 

  • Soskolne WA, Klinger A (2001) The relationship between periodontal diseases and diabetes: an overview. Ann Periodontol 6:91–98

    CAS  PubMed  Google Scholar 

  • Srisuwan T, Tilkorn DJ, Wilson JL et al (2006) Molecular aspects of tissue engineering in the dental field. Periodontol 2000 41:88–108

    PubMed  Google Scholar 

  • Suh JK, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598

    CAS  PubMed  Google Scholar 

  • Taba M Jr, Jin Q, Sugai JV, Giannobile WV (2005) Current concepts in periodontal bioengineering. Orthod Craniofac Res 8:292–302

    PubMed Central  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    CAS  PubMed  Google Scholar 

  • Tamaoki N, Takahashi K, Tanaka T et al (2010) Dental pulp cells for induced pluripotent stem cell banking. J Dent Res 89:773–778

    CAS  PubMed  Google Scholar 

  • Tan Z, Zhao Q, Gong P et al (2009) Research on promoting periodontal regeneration with human basic fibroblast growth factor-modified bone marrow mesenchymal stromal cell gene therapy. Cytotherapy 11:317–325

    CAS  PubMed  Google Scholar 

  • Thesleff I, Sharpe P (1997) Signalling networks regulating dental development. Mech Dev 67:111–123

    CAS  PubMed  Google Scholar 

  • Thesleff I, Partanen AM, Vainio S (1991) Epithelial-mesenchymal interactions in tooth morphogenesis: the roles of extracellular matrix, growth factors, and cell surface receptors. J Craniofac Genet Dev Biol 11:229–237

    CAS  PubMed  Google Scholar 

  • Thesleff I, Vaahtokari A, Kettunen P, Aberg T (1995) Epithelial-mesenchymal signaling during tooth development. Connect Tissue Res 32:9–15

    CAS  PubMed  Google Scholar 

  • Thorat M, Pradeep AR, Pallavi B (2011) Clinical effect of autologous platelet-rich fibrin in the treatment of intra-bony defects: a controlled clinical trial. J Clin Periodontol 38:925–932

    CAS  PubMed  Google Scholar 

  • Tonetti MS, Prato GP, Cortellini P (1996) Factors affecting the healing response of intrabony defects following guided tissue regeneration and access flap surgery. J Clin Periodontol 23:548–556

    CAS  PubMed  Google Scholar 

  • Tonetti MS, Cortellini P, Suvan JE et al (1998) Generalizability of the added benefits of guided tissue regeneration in the treatment of deep intrabony defects. Evaluation in a multi-center randomized controlled clinical trial. J Periodontol 69:1183–1192

    CAS  PubMed  Google Scholar 

  • Tonetti MS, Cortellini P, Lang NP et al (2004) Clinical outcomes following treatment of human intrabony defects with GTR/bone replacement material or access flap alone. A multicenter randomized controlled clinical trial. J Clin Periodontol 31:770–776

    PubMed  Google Scholar 

  • Trombelli L, Farina R (2008) Clinical outcomes with bioactive agents alone or in combination with grafting or guided tissue regeneration. J Clin Periodontol 35:117–135

    CAS  PubMed  Google Scholar 

  • Tsumanuma Y, Iwata T, Washio K et al (2011) Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine 1-wall defect model. Biomaterials 32:5819–5825

    CAS  PubMed  Google Scholar 

  • Wada N, Wang B, Lin NH, Laslett AL, Gronthos S, Bartold PM (2011) Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. J Periodontal Res 46:438–447

    Google Scholar 

  • Wallace SC, Gellin RG, Miller MC, Mishkin DJ (1994) Guided tissue regeneration with and without decalcified freeze-dried bone in mandibular Class II furcation invasions. J Periodontol 65:244–254

    CAS  PubMed  Google Scholar 

  • Wang J, Wang X, Sun Z, Yang H, Shi S, Wang S (2010) Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev 19:1375–1383

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wei N, Gong P, Liao D et al (2010) Auto-transplanted mesenchymal stromal cell fate in periodontal tissue of beagle dogs. Cytotherapy 12:514–521

    CAS  PubMed  Google Scholar 

  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    CAS  PubMed  Google Scholar 

  • Yamada Y, Ueda M, Naiki T, Nagasaka T (2004) Tissue-engineered injectable bone regeneration for osseointegrated dental implants. Clin Oral Implants Res 15:589–597

    PubMed  Google Scholar 

  • Yamada Y, Ito K, Nakamura S, Ueda M, Nagasaka T (2011) Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow. Cell Transplant 20:1003–1013

    PubMed  Google Scholar 

  • Yamamoto T, Hinrichsen KV (1993) The development of cellular cementum in rat molars, with special reference to the fiber arrangement. Anat Embryol (Berl) 188:537–549

    CAS  Google Scholar 

  • Yamamoto T, Domon T, Takahashi S, Wakita M (1994) Comparative study of the initial genesis of acellular and cellular cementum in rat molars. Anat Embryol (Berl) 190:521–527

    CAS  Google Scholar 

  • Yan X, Qin H, Qu C, Tuan RS, Shi S, Huang GT (2010) iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 19:469–480

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Y, Rossi FM, Putnins EE (2010) Periodontal regeneration using engineered bone marrow mesenchymal stromal cells. Biomaterials 31:8574–8582

    CAS  PubMed  Google Scholar 

  • Yokoi T, Saito M, Kiyono T et al (2007) Establishment of immortalized dental follicle cells for generating periodontal ligament in vivo. Cell Tissue Res 327:301–311

    CAS  PubMed  Google Scholar 

  • Young HE, Steele TA, Bray RA et al (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 264:51–62

    CAS  PubMed  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    CAS  PubMed  Google Scholar 

  • Zannettino AC, Paton S, Arthur A et al (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214:413–421

    CAS  PubMed  Google Scholar 

  • Zetterstrom O, Andersson C, Eriksson L et al (1997) Clinical safety of enamel matrix derivative (EMDOGAIN) in the treatment of periodontal defects. J Clin Periodontol 24:697–704

    CAS  PubMed  Google Scholar 

  • Zhang BG, Myers DE, Wallace GG, Brandt M, Choong PF (2014) Bioactive coatings for orthopaedic implants-recent trends in development of implant coatings. Int J Mol Sci 15:11878–11921

    PubMed Central  PubMed  Google Scholar 

  • Zheng Y, Liu Y, Zhang CM et al (2009) Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res 88:249–254

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danijela Menicanin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Menicanin, D., Hynes, K., Han, J., Gronthos, S., Bartold, P.M. (2015). Cementum and Periodontal Ligament Regeneration. In: Bertassoni, L., Coelho, P. (eds) Engineering Mineralized and Load Bearing Tissues. Advances in Experimental Medicine and Biology, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-319-22345-2_12

Download citation

Publish with us

Policies and ethics