Disruption-Tolerant Routing in Vehicular Ad-hoc Networks

  • Jacek Rak
Part of the Computer Communications and Networks book series (CCN)


Vehicular Ad-hoc NETworks (VANETs) are considered by car manufacturers as an emerging solution to provide the inter-vehicular communications to improve the public safety (e.g., by messages disseminated by vehicles in case of accidents, or bad weather conditions), traffic efficiency (e.g., traffic light information exchange to help the drivers to move in the green phase – also contributing to reduction of environmental pollution), or simply providing the travelers with infotainment possibilities such as Internet access. Many VANET applications (e.g., related to collision warning or traffic coordination issues) require reliable real-time communications to work efficiently, since information arriving too late is often no longer useful. However, due to high mobility of vehicles, VANET links are very vulnerable to disruptions and are therefore characterized by a limited lifetime commonly measured in seconds.

In this chapter, we first present a detailed analysis of differentiated reliability requirements of VANET applications in particular including the message delivery latency parameter. After that, we focus on the issues of multi-hop data delivery and present two new solutions to improve stability of end-to-end VANET communication paths based on multipath routing and anycast forwarding.


VANETs Resilience of Vehicular Ad-hoc Networks Disruption-tolerant routing Inter-vehicular communications Path lifetime Link stability Path stability Reliability Multipath routing Anypath forwarding 


  1. 1.
    Alsabaan, M., Alasmary, W., Albasir, A., Naik, K.: Vehicular networks for a greener environment: a survey. IEEE Commun. Surv. Tutorials 15(3), 1372–1388 (2013)CrossRefGoogle Scholar
  2. 2.
    Amendment of the commission’s rules regarding dedicated short-range communication services in the 5.850-5.925 GHz band (5.9 GHz band), Federal Communications Commission FCC 03–324 (2004)Google Scholar
  3. 3.
    Anaya, J.J., Merdrignac, P., Shagdar, O., Nashashibi, F., Naranjo, J.E.: Vehicle to pedestrian communications for protection of vulnerable road users. In: Proc. IEEE Intelligent Vehicles Symposium (IVS’14), pp. 1037–1042 (2014)Google Scholar
  4. 4.
    Bauza, R., Gozalvez, J., Sepulcre, M.: Power-aware link quality estimation for vehicular communication networks. IEEE Commun. Lett. 17(4), 649–652 (2013)CrossRefGoogle Scholar
  5. 5.
    Belyaev, E., Molchanov, P., Vinel, A., Koucheryavy, Y.: The use of automotive radars in video-based overtaking assistance applications. IEEE Trans. Intell. Transp. Syst. 14(3), 1035–1042 (2013)CrossRefGoogle Scholar
  6. 6.
    Belyaev, E., Vinel, A., Egiazarian, K., Koucheryavy, Y.: Power control in see-through overtaking assistance system. IEEE Commun. Lett. 17(3), 612–615 (2013)CrossRefGoogle Scholar
  7. 7.
    Blum, J.J., Eskandarian, A., Hoffman, L.: Challenges of intervehicle ad-hoc networks. IEEE Trans. Intell. Transp. Syst. 5(4), 347–351 (2004)CrossRefGoogle Scholar
  8. 8.
    Boukerche, A., Rezende, C., Pazzi, R.W.: A link-reliability-based approach to providing QoS support for VANETs. In: Proc. IEEE International Conference on Communications (IEEE ICC’09), pp. 1–5 (2009)Google Scholar
  9. 9.
    Briesemeister, L., Schäfers, L., Hommel, G.: Disseminating messages among highly mobile hosts based on inter-vehicle communication. In: Proc. IEEE Intelligent Vehicle Symposium (IVS’00), pp. 522–527 (2000)Google Scholar
  10. 10.
    Campolo, C., Molinaro, A., Vinel, A., Zhang, Y.: Modeling prioritized broadcasting in multichannel vehicular networks. IEEE Trans. Veh. Technol. 61(2), 687–701 (2012)CrossRefGoogle Scholar
  11. 11.
    Chachulski, Sz., Jennings, M., Katti, S., Katabi, D.: Trading structure for randomness in wireless opportunistic routing. In: Proc. ACM Annual Conference of the Special Interest Group on Data Communication (ACM SIGCOMM’07), pp. 169–180 (2007)Google Scholar
  12. 12.
    Chen, W., Cai, S.: Ad hoc peer-to-peer network architecture for vehicle safety communications. IEEE Commun. Mag. 43(4), 100–107 (2005)CrossRefGoogle Scholar
  13. 13.
    Chen, X., Li, L., Zhang, Y.: A Markov model for headway/spacing distribution of road traffic. IEEE Trans. Intell. Transp. Syst. 11(4), 773–785 (2010)CrossRefGoogle Scholar
  14. 14.
    Chołda, P., Mykkeltveit, A., Helvik, B.E., Wittner, O.J., Jajszczyk, A.: A survey of service resilience differentiation frameworks in communication networks. IEEE Commun. Surv. Tutorials 9(2), 32–55 (2007)Google Scholar
  15. 15.
    Deb, B., Bhatnagar, S., Nath, B.: ReInForM: reliable forwarding using multiple paths in sensor networks. In: Proc. 28th IEEE Conference on Local Computer Networks (IEEE LCN’03), pp. 406–415 (2003)Google Scholar
  16. 16.
    Dubios-Ferriere, H., Grossglauser, M., Vetterli, M.: Valuable detours: least cost anypath routing. IEEE/ACM Trans. Networking 19(2), 333–346 (2011)CrossRefGoogle Scholar
  17. 17.
    El-atty, S.M.A., Stamatiou, G.K.: Performance analysis of multihop connectivity in VANET. In: Proc. 7th International Symposium on Wireless Communication Systems (ISWCS’10), pp. 335–339 (2010)Google Scholar
  18. 18.
    ETSI: Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service: Accessed on 25 Nov. 2014
  19. 19.
    ETSITR102638, Intelligent Transport System (ITS); Vehicular Communications; Basic Set of Applications; Definition, ETSI Std. ETSI ITS, Specification TR 102 638 version 1.1.1 (June 2009)Google Scholar
  20. 20.
    Federal Communications Commission: Standard specification for telecommunications and information exchange between roadside and vehicle systems – 5GHz band dedicated short range communications (DSRC) medium access control (MAC) and physical layer (PHY) specifications, ASTM E2213-01 (Sept. 2003)Google Scholar
  21. 21.
    Fukuhara, T., Warabino, T., Ohseki, T., Saito, K., Sugiyama, K., Nishida, T., Eguchi, K.: Broadcast methods for Inter-Vehicle Communication system. In: Proc. IEEE Wireless Communications and Networking Conference (IEEE WCNC’05), vol. 4, pp. 2252–2257 (2005)Google Scholar
  22. 22.
    Harri, J., Filali, F., Bonnet, C.: Mobility models for vehicular ad hoc networks: a survey and taxonomy. IEEE Commun. Surv. Tutorials 11(4), 19–41 (2009)CrossRefGoogle Scholar
  23. 23.
    Hartenstein, H., Bochow, B., Ebner, E., Lott, M., Radimirsch M., Vollmer, D.: Position-aware ad hoc wireless networks for inter-vehicle communications: the Fleetnet project. In: Proc. 2nd ACM International Symposium on Mobile Ad Hoc Networking and Computing (ACM MobiHoc’01), pp. 259–261 (2001)Google Scholar
  24. 24.
    Hartenstein, H., Laberteaux, K.P.: A tutorial survey on vehicular ad hoc networks. IEEE Commun. Mag. 46(6), 164–171 (2008)CrossRefGoogle Scholar
  25. 25.
    Huang, X., Fang, Y.: Performance study of node-disjoint multipath routing in vehicular ad hoc networks. IEEE Trans. Veh. Technol. 58(4), 1942–1950 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Hui, J., Devetsikiotis, M.: A unified model for the performance analysis of IEEE 802.11e EDCA. IEEE Trans. Commun. 53(9), 1498–1510 (2005)CrossRefGoogle Scholar
  27. 27.
    IEEE Standards: Accessed 21 July 2014 (2010)
  28. 28.
    Jerbi, M., Senouci, S.-M., Rasheed, T., Ghamri-Doudane, Y.: Towards efficient geographic routing in urban vehicular networks. IEEE Trans. Veh. Technol. 58(9), 5048–5059 (2009)CrossRefGoogle Scholar
  29. 29.
    Jie, Z., Huang, Ch., Xu, L., Wang, B., Chen, X., Fan, X.: A trusted opportunistic routing algorithm for VANET. In: Proc. 3rd International Conference on Networking and Distributed Computing Conference (ICNDC’12), pp. 86–90 (2012)Google Scholar
  30. 30.
    Jin, W.-L., Recker, W.W.: An analytical model of multihop connectivity of inter-vehicle communication systems. IEEE Trans. Wirel. Commun. 9(1), 106–112 (2010)CrossRefGoogle Scholar
  31. 31.
    Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., Weil, T.: Vehicular networking: a survey and tutorial on requirements, architectures, challenges, standards, and solutions. IEEE Commun. Surv. Tutorials 13(4), 584–616 (2011)CrossRefGoogle Scholar
  32. 32.
    Karp, B., Kung, H.: GPSR: Greedy Perimeter Stateless Routing for wireless networks. In: Proc. ACM Annual International Conference on Mobile Computing and Networking (MobiCom’00), pp. 243–254 (2000)Google Scholar
  33. 33.
    Khandani, A.E., Abounadi, J., Modiano, E., Zheng, L.: Reliability and route diversity in wireless networks. IEEE Trans. Wirel. Commun. 7(12), 4772–4776 (2008)CrossRefGoogle Scholar
  34. 34.
    Kim, W., Oh, S.Y., Gerla, M., Lee, K.C.: CoRoute: a new cognitive anypath routing protocol. In: Proc. 7th International Conference on Wireless Communications and Mobile Computing Conference (IWCMC’11), pp. 766–771 (2011)Google Scholar
  35. 35.
    Laufer, R., Dubois-Ferriere, H., Kleinrock, L.: Polynomial-time algorithms for multirate anypath routing in wireless multihop networks. IEEE/ACM Trans. Networking 20(3), 742–755 (2012)CrossRefGoogle Scholar
  36. 36.
    Lee, K.C., Gerla, M.: Opportunistic vehicular routing. In: Proc. 16th European Wireless Conference (EW’10), pp. 873–880 (2010)Google Scholar
  37. 37.
    Leontiadis, I., Marfia, G., Mack, D., Pau, G., Mascolo, C., Gerla, M.: On the effectiveness of an opportunistic traffic management system for vehicular networks. IEEE Trans. Intell. Transp. Syst. 12(4), 1537–1548 (2011)CrossRefGoogle Scholar
  38. 38.
    Li, F., Wang, Y.: Routing in vehicular ad hoc networks: a survey. IEEE Veh. Technol. Mag. 2(2), 12–22 (2007)CrossRefGoogle Scholar
  39. 39.
    Li, T., Leith, D., Qiu, L.: Opportunistic routing for interactive traffic in wireless networks. In: Proc. 30th International Conference on Distributed Computing Systems (ICDCS’10), pp. 458–467 (2010)Google Scholar
  40. 40.
    Ma, X., Yin, X., Trivedi, K.: On the reliability of safety applications in VANETs. Int. J. Perform. Eng. 8(2), 115–130 (2012)Google Scholar
  41. 41.
    Maihöfer, C.: A survey of geocast routing protocols. IEEE Commun. Surv. Tutorials 6(2), 32–42 (2004)CrossRefGoogle Scholar
  42. 42.
    Manifesto of the Car-to-Car Communication Consortium; Accessed 22 July 2014 (Sept. 2007)
  43. 43.
    Marina, M.K., Das, S.R.: On-demand multipath distance vector routing in ad hoc networks. In: Proc. 9th International Conference on Network Protocols (IEEE ICNP’01), pp. 14–23 (2001)Google Scholar
  44. 44.
    Nagel, R.: The effect of vehicular distance distributions and mobility on VANET communications. In: Proc. IEEE Intelligent Vehicles Symposium (IEEE IVS’10), pp. 1190–1194 (2010)Google Scholar
  45. 45.
    Naumov, V., Gross, T.: Connectivity-aware routing (CAR) in vehicular ad-hoc networks. In: Proc. 26th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’07), pp. 1919–1927 (2007)Google Scholar
  46. 46.
    Nishida, T., Eguchi, K., Okamoto, Y., Warabino, T., Ohseki, T., Fukuhara, T., Saito, K.: Inter-vehicle P2P communication experimental on-board terminal. In: Proc. 2nd IEEE Consumer Communications and Networking Conference (IEEE CCNC’05), pp. 434–438 (2005)Google Scholar
  47. 47.
    Oka, H., Higaki, H.: Multihop data message transmission with inter-vehicle communication and Store-Carry-Forward in sparse vehicle ad-hoc networks (VANET). In: Proc. New Technologies, Mobility and Security Conference (NTMS’08), pp. 1–5 (2008)Google Scholar
  48. 48.
    Ooi, Ch.-Ch., Fisal, N.: Implementation of geocast-enhanced AODV-Bis routing protocol in MANET. In: Proc. IEEE TENCON’04, pp. 660–663 (2004)Google Scholar
  49. 49.
    Panichpapiboon, S., Pattara-Atikom, W.: A review of information dissemination protocols for vehicular ad hoc networks. IEEE Commun. Surv. Tutorials 14(3), 784–798 (2012)Google Scholar
  50. 50.
    Perkins, C., Belding-Royer, E., Das, S.: Ad hoc on-demand distance vector (AODV) routing. IEFT RFC 3561 (2003)Google Scholar
  51. 51.
    Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Proc. IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’99), pp. 90-100 (1999)Google Scholar
  52. 52.
    Rak, J.: LLA: a new anypath routing scheme providing long path lifetime in VANETs. IEEE Commun. Lett. 18(2), 281–284 (2014)CrossRefGoogle Scholar
  53. 53.
    Rak, J.: Providing differentiated levels of service availability in VANET communications. IEEE Commun. Lett. 17(7), 1380–1383 (2013)CrossRefGoogle Scholar
  54. 54.
    Sermpezis, P., Koltsidas, G., Pavlidou, F.-N.: Investigating a junction-based multipath source routing algorithm for VANETs. IEEE Commun. Lett. 17(3), 600–603 (2013)CrossRefGoogle Scholar
  55. 55.
    Sichitiu, M.L., Kihl, M.: Inter-vehicle communication systems: a survey. IEEE Commun. Surv. Tutorials 10(2), 88–105 (2008)CrossRefGoogle Scholar
  56. 56.
    Sun, W., Yamaguchi, H., Yukimasa, K., Kusumoto, S.: GVGrid: A QoS routing protocol for vehicular ad hoc networks. In: Proc. 14th IEEE International Workshop on Quality of Service (IEEE IWQoS’06), pp. 130–139 (2006)Google Scholar
  57. 57.
    Suthaputchakun, C., Dianati, M., Sun, Z.: Trinary partitioned black-burst-based broadcast protocol for time-critical emergency message dissemination in VANETs. IEEE Trans. Veh. Technol. 63(6), 2926–2940 (2014)CrossRefGoogle Scholar
  58. 58.
    Toor, Y., Muhlethaler, P., Laouiti, A.: Vehicle ad hoc networks: applications and related technical issues. IEEE Communications Surveys & Tutorials. 10(3), 74–88 (2008)CrossRefGoogle Scholar
  59. 59.
    Vehicle Safety Communications Project, Final Report, DOT HS 810 591, Accessed 21 July 2014 (April 2006)
  60. 60.
    Vinel, A., Belyaev, E., Egiazarian, K., Koucheryavy, Y.: An overtaking assistance system based on joint beaconing and real-time video transmission. IEEE Trans. Veh. Technol. 61(5), 2319–2329 (2012)CrossRefGoogle Scholar
  61. 61.
    Vinel, A., Campolo, C., Petit, J., Koucheryavy, Y.: Trustworthy broadcasting in IEEE 802.11p/WAVE vehicular networks: delay analysis. IEEE Commun. Lett. 15(9), 1010–1012 (2011)CrossRefGoogle Scholar
  62. 62.
    Wakikawa, R., Sahasrabudhe, M.: Gateway management for vehicle to vehicle communication. In: Proc. 1st International Workshop on Vehicle-to-Vehicle Communications, UCSD, San Diego (2005)Google Scholar
  63. 63.
    Wu, Ch.-Sh., Pang, A.-Ch., Hsu, Ch.-Sh.: Design of fast restoration multipath routing in VANETs. In: Proc. International Computer Symposium (ICS’10), pp. 73–78 (2010)Google Scholar
  64. 64.
    Yan, G., Olariu, S.: A probabilistic analysis of link duration in vehicular ad hoc networks. IEEE Trans. Intell. Transp. Syst. 12(4), 1227–1236 (2011)CrossRefGoogle Scholar
  65. 65.
    Yang, Q., Lim, A., Li, Sh., Fang, J.: ACAR: adaptive connectivity aware routing protocol for vehicular ad-hoc networks. In: Proc. International Conference on Computer Communications and Networks (ICCCN’08), pp. 1–6 (2008)Google Scholar
  66. 66.
    Ye, Z., Krishnamurthy, S.V., Tripathi, S.K.: A framework for reliable routing in mobile ad-hoc networks. In: Proc. 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE INFOCOM’03), pp. 270–280 (2003)Google Scholar
  67. 67.
    Yousefi, S., Altman, E., El-Azouzi, R., Fathy, M.: Analytical model for connectivity in vehicular ad hoc networks. IEEE Trans. Veh. Technol. 57(6), 3341–3356 (2008)CrossRefGoogle Scholar
  68. 68.
    Zeng, K., Lou, W., Zhai, H.: On end-to-end throughput of opportunistic routing in multirate and multihop wireless networks. In: Proc. 27nd Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE INFOCOM’08), pp. 1490–1498 (2012)Google Scholar
  69. 69.
    Zhang, W., Chen, Y., Yang, Y., Wang, X., Zhang, Y., Hong, X., Mao, G.: Multi-hop connectivity probability in infrastructure-based vehicular networks. IEEE Selected Areas in Communications. 30(4), 740–747 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jacek Rak
    • 1
  1. 1.Faculty of Electronics, Telecommunications, and InformaticsGdansk University of TechnologyGdanskPoland

Personalised recommendations