Advertisement

Resilience of Future Internet Communications

  • Jacek Rak
Part of the Computer Communications and Networks book series (CCN)

Abstract

Over the last 40 years, we have been observing a gradual evolution of the Internet from an academic network towards a widespread commercial architecture. The InteAbstractrnet, originally designed as a computer communication network of datagram orientation only, has been progressively adapted to meet the evolving diverse expectations of end users with respect to services and applications of daily use to enhance the quality of life. However, the main architectural changes to the Internet architecture have been mostly the “last minute” fixes/updates, while important modifications have recently become hardly feasible. This in turn has driven the research community to design the respective Future Internet (FI) solutions within various research activities.

In this chapter, we (1) discuss in detail the key research topics and requirements for the FI architecture in particular related to network virtualization, (2) present our solutions to network resource provisioning necessary to provide network resilience (deployed by us in one of European research projects on FI architecture, called Future Internet Engineering), as well as (3) describe three proposals of a dedicated protection and shared protection in random failure scenarios, as well as of a dedicated protection against faults of communication nodes/links following from malicious activities.

Keywords

Future Internet resilience Resilience of content-oriented networking Network virtualization Resource provisioning Survivable anycasting Intentional failures 

References

  1. 1.
    Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutcher, D., Ohlman, B.: A survey of information-centric networking. IEEE Commun. Mag. 50(7), 26–36 (2012)CrossRefGoogle Scholar
  2. 2.
    Akamai project: http://www.akamai.com. Accessed on 8 Mar. 2015
  3. 3.
    Akari architecture design project: http://www.nict.go.jp/en/photonic_nw/archi/akari/akari-top_e.html . Accessed on 8 Mar. 2015
  4. 4.
    Ali, M.: Shareability in optical networks: beyond bandwidth optimization. IEEE Opt. Commun. 42(2), s11–s15 (2004)CrossRefGoogle Scholar
  5. 5.
    Al-Naday, M.F., Reed, M.J., Trossen, D., Yang, K.: Information resilience: source recovery in an information-centric network. IEEE Netw. 28(3), 36–42 (2014)CrossRefGoogle Scholar
  6. 6.
    Anderson, T., Peterson, L., Shenker, S., Turner, J.: Overcoming the Internet impasse through virtualization. IEEE Comput. 38(4), 34–41 (2005)Google Scholar
  7. 7.
    Awerbuch, B., Brinkmann, A., Scheideler, C.: Anycasting in adversarial systems: routing and admission control. Lect. Notes Comput. Sci., Springer. 2719, 1153–1168 (2003)Google Scholar
  8. 8.
    Álvarez, F., Cleary, F., Daras, P., Domingue, J., Galis, A., Garcia, A., Gavras, A., Karnourskos, S., Krco, S., Li, M.-S., Lotz, V., Müller, H., Salvadori, E., Sassen, A.-M., Schaffers, H., Stiller, B., Tselentis, G., Turkama, P., Zahariadis, T. (eds.): The Future Internet – Future Internet Assembly (FIA 2012): From Promises to Reality, Aalborg, 9–11 May, 2012. Lect. Notes Comput. Sci., Springer. 7281 (2012)Google Scholar
  9. 9.
    Balasubramaniam, S., Leibniz, K., Lio, P., Botvich, D., Murata, M.: Biological principles for Future Internet architecture design. IEEE Commun. Mag. 49(7), 44–52 (2011)CrossRefGoogle Scholar
  10. 10.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Botero, J.F., Hesselbach, X., Fischer, A., de Meer, H.: Optimal mapping of virtual networks with hidden hops. Telecommun. Syst. 51(4), 273–282 (2012)CrossRefGoogle Scholar
  12. 12.
    Burakowski, W.: Role of network virtualization in designing Future Internet. In: Proc. 15th Telecommunications Network Strategy and Planning Symposium (Networks’12), pp. 1–3 (2012)Google Scholar
  13. 13.
    Burakowski, W., et al.: IIP System specification level 1 and 2, POIG IIP project deliverable (2011)Google Scholar
  14. 14.
    Cerf, V.G.: The day the Internet age began. Nature 461(7268), 1202–1203 (2009)CrossRefGoogle Scholar
  15. 15.
    China Education and Research Network: http://www.edu.cn/english/. Accessed on 24 Nov. 2014
  16. 16.
    Chołda, P., Gozdecki, J., Kantor, M., Wielgosz, M., Pach, A.R., Wajda, K., Rak, J.: Provisioning concepts of the IIP Initiative. In: Proc. 13th International Conference on Transparent Optical Networks (ICTON’11), pp. 1–4 (2011)Google Scholar
  17. 17.
    Chou, H.-Z., Wang, S.-C., Kuo, S.-Y., Chen, I.-Y., Yuan, S.-Y.: Randomised and distributed methods for reliable peer-to-peer data communication in wireless ad hoc networks. IET Commun. 1(5), 915–923 (2007)CrossRefGoogle Scholar
  18. 18.
    Chowdhury, N.M., Boutaba, R.: Network virtualization: state of the art and research challenges. IEEE Commun. Mag. 47(7), 20–26 (2009)CrossRefGoogle Scholar
  19. 19.
    D’Ambrosio, M., Fasano, P., Marchisio, M., Vercellone, V., Ullio, M.: Providing data dissemination services in the Future Internet. In: Proc. IEEE Global Communications Conference (IEEE GLOBECOM’08), pp. 1–6 (2008)Google Scholar
  20. 20.
    Dedecker, P., Hoebeke, J., Moerman, I., Moreau, J., Demeester, P.: Network virtualization as an integrated solution for emergency communication. Telecommun. Syst. 52(4), 1859–1876 (2013)CrossRefGoogle Scholar
  21. 21.
    Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Din, D.: Anycast routing and wavelength assignment problem on WDM network. IEICE Trans. Commun. E88-B(10), 3941–3951 (2005)CrossRefGoogle Scholar
  23. 23.
    Domingue, J., Galis, A., Gavras, A., Zahariadis, T., Lambert, D., Cleary, F., Daras, P., Krco, S., Müller, H., Li, M.-S., Schaffers, H., Lotz, V., Alvarez, F., Stiller, B., Karnouskos, S., Avessta, S., Nilsson, M. (eds.): The Future Internet – Future Internet Assembly 2011: Achievements and Technological Promises. Lect. Notes Comput. Sci., Springer, Berlin. 6656 (2011)Google Scholar
  24. 24.
    European Commission: Council decision establishing the specific program implementing HORIZON 2020 – the framework programme for research and innovation (2014–2020). Brussels, 2011. Work Programme 5.i. Leadership in technologies. Draft Discussion Doc. pp. 86–86 (2013)Google Scholar
  25. 25.
    European Commission: http://ec.europa.eu. Accessed on 21 Nov. 2014
  26. 26.
    Feldmann, A.: Internet clean-slate design: what and why? ACM SIGCOMM Comput. Commun. Rev. 37(3), 59–64 (2007)CrossRefGoogle Scholar
  27. 27.
    FIRE: Future Internet Research and Experimentation: http://cordis.europa.eu/fp7/ict/fire/. Accessed on 24 Nov. 2014
  28. 28.
    Future Internet Assembly: http://www.future-internet.eu/home/future-internet-assembly.html. Accessed on 20 Nov. 2014
  29. 29.
    Future Internet Engineering (IIP) Initiative: http://www.iip.net.pl. Accessed on 24 Nov. 2014
  30. 30.
    GEANT2 project: http://www.geant2.net/. Accessed on 24 Nov. 2014
  31. 31.
    Gedik, B., Liu, L.: A scalable peer-to-peer architecture for distributed information monitoring applications. IEEE Trans. Comput. 54(6), 767–782 (2005)CrossRefGoogle Scholar
  32. 32.
    Ghodsi, A., Koponen, T., Rajahalme, J., Sarolahti, P., Shenker, S.: Naming in content-oriented architectures. In: Proc. ACM SIGCOMM’11 Workshop on Information-Centric Networking, pp. 1–6 (2011)Google Scholar
  33. 33.
    Gładysz, J., Walkowiak, K.: Optimization of survivable networks with simultaneous unicast and anycast flows. In: Proc. RNDM’09 @ International Conference on Ultra Modern Telecommunications & Workshops (ICUMT’09), pp. 1–6 (2009)Google Scholar
  34. 34.
    Global Environment for Network Innovations (GENI) Project: http://www.geni.net/. Accessed on 24 Nov. 2014
  35. 35.
    Goh, K.-I., Oh, E.S., Jeong, H., Kahng, B., Kim, D.: Classification of scale free networks. arXiv:cond-mat/0205232, v2 (2002)Google Scholar
  36. 36.
    Gozdecki, J., Kantor, M., Wajda, K., Rak, J.: A flexible provisioning module optimizing utilization of resources for the Future Internet IIP initiative. In: Proc. 15th International Telecommunications Network Strategy and Planning Symposium (NETWORKS’12), pp. 1–6 (2012)Google Scholar
  37. 37.
    Gozdecki, J., Kantor, M., Wajda, K., Rak, J.: Methods of network resource provisioning for the Future Internet IIP initiative. Telecommunication Systems (2015). doi: 10.1007/s11235-015-9997-5 Google Scholar
  38. 38.
    Habib, M.F., Tornatore, M., De Leenheer, M., Dikbiyik, F., Mukherjee, B.: Design of disaster-resilient optical datacenter networks. IEEE/OSA J. Lightwave Technol. 30(16), 2563–2573 (2011)CrossRefGoogle Scholar
  39. 39.
    Ho, P.-H., Mouftah, H.T.: A framework for service-guaranteed shared protection in WDM mesh networks. IEEE Commun. Mag. 40(2), 97–103 (2002)zbMATHCrossRefGoogle Scholar
  40. 40.
    Ho, P.-H., Tapolcai, J., Cinkler, T.: Segment shared protection in mesh communications networks with bandwidth guaranteed tunnels. IEEE/ACM Trans. Networking 12(6), 1105–1118 (2004)CrossRefGoogle Scholar
  41. 41.
    Ho, P.-H., Tapolcai, J., Mouftah, H.T.: Diverse routing for shared protection in survivable optical networks. In: Proc. IEEE Global Communications Conference (IEEE GLOBECOM’03), vol. 5, pp. 2519–2523 (2003)Google Scholar
  42. 42.
    Hofmann, M., Beaumont, L.: Content Networking: Architecture, Protocols, and Practice. Morgan Kaufmann, San Francisco (2005)Google Scholar
  43. 43.
    IEEE Communications Society: A Brief History of Communications, 2nd edition, IEEE, Piscataway (2012)Google Scholar
  44. 44.
    Koponen, T., Chawla, M., Chun, B.-G., Ermolinskiy, A., Kim, K.H., Shenker, S., Stoica, I.: A data-oriented (and beyond) network architecture. In: Proc. ACM Annual Conference of the Special Interest Group on Data Communication (ACM SIGCOMM’07), pp. 181–192 (2007)Google Scholar
  45. 45.
    Kounavis, M.E., Campbell, A.T., Chou, S., Modoux, F., Vicente, J., Zhuang, H.: The Genesis Kernel: a programming system for spawning network architectures. IEEE J. Sel. Areas Commun. 19(3), 511–526 (2001)CrossRefGoogle Scholar
  46. 46.
    Low, C.P., Tan, C.L.: On anycast routing with bandwidth constraint. Comput. Commun. 26(14), 1541–1550 (2003)CrossRefGoogle Scholar
  47. 47.
    Metz, C.: IP anycast point-to-(any) point communication. IEEE Internet Comput. 6(2), 94–98 (2002)CrossRefGoogle Scholar
  48. 48.
    MobilityFirst Future Internet Architecture Project: http://mobilityfirst.winlab.rutgers.edu/. Accessed on 24 Nov 2014
  49. 49.
    Molisz, W., Rak, J.: Region protection/restoration scheme in survivable networks. Lect. Notes Comput. Sci., Springer. 3685, 442–447 (2005)Google Scholar
  50. 50.
    Mukherjee, B.: Optical WDM Networks. Springer, New York (2006)Google Scholar
  51. 51.
    Named Data Networking project: http://www.named-data.net. Accessed on 24 Nov. 2014
  52. 52.
    National Science Foundation: http://www.nsf.gov. Accessed on 24 Nov. 2014
  53. 53.
    NSF Future Internet Architecture Project: http://www.nets-fia.net. Accessed on 24 Nov. 2014
  54. 54.
    NSF NeTS FIND Initiative: http://www.nets-find.net. Accessed on 24 Nov. 2014
  55. 55.
    Pan, J., Paul, S., Jain, R.: A survey of the research on future internet architectures. IEEE Commun. Mag. 49(7), 26–36 (2011)CrossRefGoogle Scholar
  56. 56.
    Petcu, D., Galis, A, Karnouskos, S.: The Future Internet cloud: computing networking and mobility. Introduction to chapter on computing and mobile clouds. In: The Future Internet – FIA 2013: validated results and new horizons, pp. xiii–xv (2013)Google Scholar
  57. 57.
    Rak, J.: Fast service recovery under shared protection in WDM networks. IEEE/OSA J. Lightwave Technol. 30(1), 84–95 (2012)CrossRefGoogle Scholar
  58. 58.
    Rak, J.: k-Penalty: a novel approach to find k-disjoint paths with differentiated path costs. IEEE Commun. Lett. 14(4), 354–356 (2010)CrossRefGoogle Scholar
  59. 59.
    Rak, J., Walkowiak, K.: Reliable anycast and unicast routing: protection against attacks. Telecommun. Syst. 52(2), 889–906 (2013)Google Scholar
  60. 60.
    Sallai, G.: Chapters of Future Internet research. In: Proc. 4th International Conference on Cognitive Infocommunications (CogInfoCom’13), pp. 161–166 (2013)Google Scholar
  61. 61.
    Schoenwaelder, J., Fouquet, M., Rodosek, G.D., Hochstatter, I.C.: Future Internet = content + services + management. IEEE Commun. Mag. 47(7), 27–33 (2009)CrossRefGoogle Scholar
  62. 62.
    Software-defined networking: the new norm for networks. White paper, Open Networking Foundation (ONF), April 2012: https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf. Accessed on 8 Mar. 2015
  63. 63.
    The FP7 4WARD Project: http://www.4ward-project.eu/. Accessed on 25 Nov. 2014
  64. 64.
    Touch, J.: Dynamic internet overlay deployment and management using the X-bone. Comput. Netw. 36(2–3), 117–135 (2001)CrossRefGoogle Scholar
  65. 65.
    Triukose, S., Wen, Z., Rabinovich, M.: Content delivery networks: how big is big enough? ACM SIGMETRICS Perform. Eval. Rev. 37(2), 59–60 (2009)CrossRefGoogle Scholar
  66. 66.
    Trossen, D., Parisis, G.: Designing and realizing an information-centric Internet. IEEE Commun. Mag. 50(7), 60–67 (2012)CrossRefGoogle Scholar
  67. 67.
    Tselentis, G., et al. (eds.): Towards the Future Internet – Emerging Trends from European Research. Future Internet Assembly (FIA 2010), IOS Press, Amsterdam (2010)Google Scholar
  68. 68.
    Turner, J., Taylor, D.: Diversifying the Internet. In Proc. IEEE Global Communications Conference (IEEE GLOBECOM’05), vol. 2, pp. 765–760 (2005)Google Scholar
  69. 69.
    Walkowiak, K.: Anycast communications, a new approach to survivability of connection-oriented networks. Commun. Comput. Inf. Sci., Springer. 1, 378–389 (2007)Google Scholar
  70. 70.
    Walkowiak, K.: Anycasting in connection-oriented computer networks: models, algorithms and results. Int. J. Appl. Math. Comput. Sci. 20(1), 207–220 (2010)zbMATHCrossRefGoogle Scholar
  71. 71.
    Walkowiak, K., Rak, J.: Shared backup path protection for anycast and unicast flows using the node-link notation. In: Proc. IEEE International Conference on Communications (IEEE ICC’11), pp. 1–6 (2011)Google Scholar
  72. 72.
    Walkowiak, K., Rak, J.: Simultaneous optimization of unicast and anycast flows and replica location in survivable optical networks. Telecommun. Syst. 52(2), 1043–1055 (2013)Google Scholar
  73. 73.
    Xia, W., Wen, Y., Foh, C.H., Niyato, D., Xie, H.: A survey on software-defined networking. IEEE Commun. Surv. Tutorials 17(1), 27–51 (2015)CrossRefGoogle Scholar
  74. 74.
    Xylomenos, G., Ververidis, C.N., Siris, V.A., Fotiou, N., Tsilopoulos, C., Vasilakos, X., Katsaros, K.V., Polyzos, G.C.: A survey of information-centric networking research. IEEE Commun. Surv. Tutorials 16(2), 1024–1049 (2014)CrossRefGoogle Scholar
  75. 75.
    Yin, H., Liu, X., Min, G., Lin, C.: Content delivery networks: a bridge between emerging applications and future IP networks. IEEE Netw. 24(4), 52–56 (2010)CrossRefGoogle Scholar
  76. 76.
    Zhou, S., Mondragon, R.J.: The rich-club phenomenon in the Internet topology. IEEE Commun. Lett. 8(3), 180–182 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jacek Rak
    • 1
  1. 1.Faculty of Electronics, Telecommunications, and InformaticsGdansk University of TechnologyGdanskPoland

Personalised recommendations