Advertisement

Principles of Communication Networks Resilience

  • Jacek Rak
Part of the Computer Communications and Networks book series (CCN)

Abstract

Faults of communication network elements are inevitable. They may be implication of various challenges, including forces of nature (e.g., hurricanes, earthquakes), human errors (e.g., cable cuts), or malicious attacks. There is thus a justified need to provide the network with mechanisms of automatic reconfiguration to enable restoration of network services until faults of nodes/links are physically repaired. This in turn brings us to the topic of network resilience addressed in detail in this chapter.

In particular, the chapter starts with the presentation of challenges responsible for faults occurrence. Due to a remarkable diversity of communication network technologies and related differentiated failure scenarios, a number of network resilience disciplines have been proposed (in particular referring to survivability, fault tolerance, traffic tolerance, and disruption tolerance mechanisms), as well as measurable characteristics of network dependability attributes (such as reliability and availability), security, or performability – all related to the perceived service quality, as described in detail in this chapter.

The next (core) part presents an overview of resilient routing mechanisms available in the literature mainly based on the utilization of alternate (backup) paths to deliver the traffic in case of faults of network elements affecting the primary transmission paths. The chapter is concluded by presentation of three selected up-to-date topics discussed in detail in the later part of this book, including: (1) the Internet of the Future, (2) Wireless Mesh Networks, and (3) Vehicular Ad-hoc Networks.

Keywords

Resilient routing Network resilience Network challenges Resilience disciplines Challenge tolerance Trustworthiness Robustness Recovery time Survivability Reliability Availability 

References

  1. 1.
    Agarwal, P.K., Efrat, A., Ganjugunte, S., Hay, D., Sankararaman, S., Zussman, G.: The resilience of WDM networks to probabilistic geographical failures. In: Proc. 30th Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE INFOCOM’11), pp. 1521–1529 (2011)Google Scholar
  2. 2.
    Asthana, R., Singh, Y.N., Grover, W.: p-cycles: an overview. IEEE Commun. Surv. Tutorials 12(1), 97–111 (2010)CrossRefGoogle Scholar
  3. 3.
    Avizienis, A., Laprie, J.-C., Randell, B.: Dependability and its threats: a taxonomy. In: Jacquart, R. (ed.) Building the information society, vol. 156, IFIP International Federation for Information Processing, pp. 91–120. Springer, New York (2004)Google Scholar
  4. 4.
    Avizienis, A., Laprie, J. C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. Technical Research Report TR2004-47, Institute for Systems Research, The University of Maryland (2004)Google Scholar
  5. 5.
    Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable and Secure Comput. 1(1), 11–33 (2004)CrossRefGoogle Scholar
  6. 6.
    Bhandari, R.: Optimal physical diversity algorithms and survivable networks. In: Proc. 2nd IEEE Symposium on Computers and Communications (ISCC’97), pp. 433–441 (1997)Google Scholar
  7. 7.
    Bhandari, R.: Survivable Networks: Algorithms for Diverse Routing. Kluwer Academic, Boston (1999)Google Scholar
  8. 8.
    Caini, C., Cruickshank, H., Farrell, S., Marchese, M.: Delay- and disruption-tolerant networking (DTN): an alternative solution for future satellite networking applications. Proc. IEEE 99(11), 1980–1997 (2011)CrossRefGoogle Scholar
  9. 9.
    Cetinkaya, E.K., Sterbenz, J.P.G.: A taxonomy of network challenges. In: Proc. 9th International Conference on Design of Reliable Communication Networks (DRCN’13), pp. 322–330 (2013)Google Scholar
  10. 10.
    Chołda, P., Jajszczyk, A.: Recovery and its quality in multilayer networks. IEEE/OSA J. Lightwave Technol. 28(4), 372–389 (2010)CrossRefGoogle Scholar
  11. 11.
    Chołda, P., Mykkeltveit, A., Helvik, B.E., Wittner, O.J., Jajszczyk, A.: A survey of resilience differentiation frameworks in communication networks. IEEE Commun. Surv. Tutorials 9(4), 32–55 (2007)CrossRefGoogle Scholar
  12. 12.
    Chołda, P., Tapolcai, J., Cinkler, T., Wajda, K., Jajszczyk, A.: Quality of Resilience as a network reliability characterization tool. IEEE Netw. 23(2), 11–19 (2009)CrossRefGoogle Scholar
  13. 13.
    Colle, D., De Maesschalck, S., Develder, C., Van Heuven, P., Groebbens, A., Cheyns, J., Lievens, U., Pickavet, M., Lagasse, P., Demeester, P.: Data-centric optical networks and their survivability. IEEE J. Sel. Areas Commun. 20(1), 6–20 (2002)Google Scholar
  14. 14.
    Cowie, J., Popescu, A., Underwood, T.: Impact of Hurricane Katrina on Internet Infrastructure, Technical Report, Renesys (2005)Google Scholar
  15. 15.
    Cucurull, J., Asplund, M., Nadjm-Tehrani, S., Santoro, T.: Surviving attacks in challenged networks. IEEE Trans. Dependable and Secure Comput. 9(6), 917–929 (2012)CrossRefGoogle Scholar
  16. 16.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Doucette, J., Giese, P., Grover, W.D.: Combined node and span protection strategies with node-encircling p-cycles. In: Proc. 5th International Workshop on Design of Reliable Communication Networks (DRCN’05), pp. 213–221 (2005)Google Scholar
  18. 18.
    Fangming, L., Bo, L., Lili, Z., Baochun, L., Hai, J., Xiaofei, L.: Flash crowd in P2P live streaming systems: fundamental characteristics and design implications. IEEE Trans. Parallel. Distrib. Syst. 23(7), 1227–1239 (2012)Google Scholar
  19. 19.
    Feng, T., Ruan, L., Zhang, W.: Intelligent p-Cycle protection for multicast sessions in WDM networks. In: Proc. IEEE International Conference on Communications (IEEE ICC’08), pp. 5165–5169 (2008)Google Scholar
  20. 20.
    Fry, M., Fischer, M., Karaliopoulos, M., Smith, P., Hutchison, D.: Challenge identification for network resilience. In: Proc. 6th EURO-NF Conference on Next Generation Internet (NGI’10), pp. 1–8 (2010)Google Scholar
  21. 21.
    Geva, M., Herzberg, A., Gev, Y.: Bandwidth Distributed Denial of Service: attacks and defences. IEEE Secur. Priv. 12(1), 54–61 (2014)CrossRefGoogle Scholar
  22. 22.
    Grover, W.D.: Mesh-based Survivable Networks. Options and Strategies for Optical, MPLS, SONET, and ATM Networks. Prentice Hall PTR, Upper Saddle River (2004)Google Scholar
  23. 23.
    Grover, W.D.: The protected working capacity envelope concept: an alternate paradigm for automated service provisioning. IEEE Commun. Mag. 42(1), 62–69 (2004)CrossRefGoogle Scholar
  24. 24.
    Grover, W.D., Shen, G.: Extending the p-cycle concept to path-segment protection. In: Proc. IEEE International Conference on Communications (IEEE ICC’03), 2, pp. 1314–1319 (2003)Google Scholar
  25. 25.
    Grover, W.D., Stamatelakis, D.: Cycle-oriented distributed preconfiguration: ring-speed with mesh-like capacity for self-planning network restoration. In: Proc. IEEE International Conference on Communications (IEEE ICC’98), pp. 537–543 (1998)Google Scholar
  26. 26.
    Haddadi, H., Rio, M., Iannaccone, G., Moore, A., Mortier, R.: Network topologies: inference, modeling, and generation. IEEE Commun. Surv. Tutorials 10(2), 48–69 (2008)CrossRefGoogle Scholar
  27. 27.
    Haider, A., Harris, R.: Recovery techniques in Next Generation Networks. IEEE Commun. Surv. Tutorials 9(3), 2–17 (2004)CrossRefGoogle Scholar
  28. 28.
    Heegaard, P.E., Trivedi, K.S.: Network survivability modeling. Comput. Netw. 53(8), 1215–1234 (2009)Google Scholar
  29. 29.
    Ho, P.-H.: State of the art progress in developing survivable routing schemes in mesh WDM networks. IEEE Commun. Surv. Tutorials 6(4), 2–16 (2004)CrossRefGoogle Scholar
  30. 30.
    Ho, P.-H., Tapolcai, J., Cinkler, T.: Segment shared protection in mesh communication networks with bandwidth guaranteed tunnels. IEEE/ACM Trans. Networking 12(6), 1105–1118 (2004)CrossRefGoogle Scholar
  31. 31.
    Ho, P.-H., Tapolcai, J., Mouftah, H.: On achieving optimal survivable routing for shared protection in survivable Next-Generation Internet. IEEE Trans. Reliab. 53(2), 216–225 (2004)CrossRefGoogle Scholar
  32. 32.
    Jaumard, B., Rocha, C., Baloukov, D., Grover, W.D.: A column generation approach for design of networks using path-protecting p-cycles. In: Proc. 6th International Workshop on Design of Reliable Communication Networks (DRCN’07), pp. 1–8 (2007)Google Scholar
  33. 33.
    Jung, J., Krishnamurthy, B., Rabinovich, M.: Flash crowds and denial of service attacks: characterization and implication for CDNs and web sites. In: Proc. 11th International Conference on World Wide Web (WWW’02), pp. 293–304 (2002)Google Scholar
  34. 34.
    Kappenman, J.: A perfect storm of planetary proportions. IEEE Spect. Mag. 49(2), 26–31 (2012)Google Scholar
  35. 35.
    Khabbaz, M.J., Assi, C.M., Fawaz, W.F.: Disruption-tolerant networking: a comprehensive survey on recent developments and persisting challenges. IEEE Commun. Surv. Tutorials 14(2), 607–640 (2012)CrossRefGoogle Scholar
  36. 36.
    Kiaei, M.S., Assi, C., Jaumard, B.: A survey on the p-cycle protection method. IEEE Commun. Surv. Tutorials 11(3), 53–70 (2009)CrossRefGoogle Scholar
  37. 37.
    Kitamura, Y., Lee, Y., Sakiyama, R., Okamura, K.: Experience with restoration of Asia Pacific network failures from Taiwan earthquake. IEICE Trans. Commun. E90-B(11), 3095–3103 (2007)CrossRefGoogle Scholar
  38. 38.
    Kodian, A., Grover, W.D.: Failure-independent path-protecting p-cycles: efficient and simple fully preconnected optical-path protection. IEEE/OSA J. Lightwave Technol. 23(10), 3241–3259 (2005)CrossRefGoogle Scholar
  39. 39.
    Kompella, K., Swallow, G.: Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures, IETF RFC 4379 (2006)Google Scholar
  40. 40.
    Laprie, J.C.: Dependability: Basic Concepts and Terminology. IFIP Working Group 10.4 – Dependable Computing and Fault Tolerance, Springer-Verlag Wien (1994)Google Scholar
  41. 41.
    Laprie, J.-C.: Resilience for the scalability of dependability. In: Proc. Fourth IEEE International Symposium on Network Computing and Applications, pp. 5–6 (2005)Google Scholar
  42. 42.
    Liu, Y., Tipper, D., Siripongwutikorn, P.: Approximating optimal spare capacity allocation by successive survivable routing. IEEE/ACM Trans. Networking 13(1), 198–211 (2005)CrossRefGoogle Scholar
  43. 43.
    Maruyama, H., Legaspi, R., Minami, K., Yamagata, Y.: General resilience: taxonomy and strategies. In: Proc. 2014 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE’14), pp. 1–8 (2014)Google Scholar
  44. 44.
    Mingsen, X., Wen-Zhan, S., Deukhyoun, H., Jong-Hoon, K., Byeong-Sam, K.: ECPC: preserve downtime data persistence in disruptive sensor networks. In: Proc. IEEE Mobile Ad-Hoc and Sensor Systems (MASS’13), pp. 281–289 (2013)Google Scholar
  45. 45.
    Misseri, X., Gojmerac, I., Rougier, J.-L.: IDRD: enabling inter-domain route diversity. In: Proc. IEEE International Conference on Communications (IEEE ICC’13), pp. 3536–3541 (2013)Google Scholar
  46. 46.
    Molisz, W.: Survivability function: a measure of disaster-based routing performance. IEEE J. Sel. Areas Commun. 22(9), 1876–1883 (2004)Google Scholar
  47. 47.
    Molisz, W., Rak, J.: A novel class-based protection algorithm providing fast service recovery in IP/WDM networks. Lect. Notes Comput. Sci. 4982, 338–345 (2008)CrossRefGoogle Scholar
  48. 48.
    Molisz, W., Rak, J.: Region protection/restoration scheme in survivable networks. Lect. Notes Comput. Sci. 3685, 442–447 (2005)CrossRefGoogle Scholar
  49. 49.
    Mukherjee, B.: Optical WDM Networks. Springer, New York (2006)Google Scholar
  50. 50.
    Mukherjee, B., Habib, M.F., Dikbiyik, F.: Network adaptability from disaster disruptions and cascading failures. IEEE Commun. Mag. 52(5), 230–238 (2014)CrossRefGoogle Scholar
  51. 51.
    Neumayer, S., Zussman, G., Cohen, R., Modiano, E.: Assessing the vulnerability of the fiber infrastructure to disasters. IEEE/ACM Trans. Networking 19(6), 1610–1623 (2011)CrossRefGoogle Scholar
  52. 52.
    Nicol, D.M., Sanders, W.H., Trivedi, K.S.: Model-based evaluation: from dependability to security. IEEE Trans. Dependable and Secure Comput. 1(1), 48–65 (2004)CrossRefGoogle Scholar
  53. 53.
    Rak, J.: Fast service recovery under shared protection at connection level in WDM grooming networks. In: Proc. 22nd IEEE International Symposium on Computer and Information Sciences (ISCIS’07), pp. 1–6 (2007)Google Scholar
  54. 54.
    Rak, J.: Fast service recovery under shared protection in WDM networks. IEEE/OSA J. Lightwave Technol. 30(1), 84–95 (2012)CrossRefGoogle Scholar
  55. 55.
    Rak, J.: k-Penalty: a novel approach to find k-disjoint paths with differentiated path costs. IEEE Commun. Lett. 14(4), 354–356 (2010)CrossRefGoogle Scholar
  56. 56.
    Rak, J.: Priority-enabled optimization of resource utilization in fault-tolerant optical transport networks. Lect. Notes Comput. Sci. 4208, 863–873 (2006)CrossRefGoogle Scholar
  57. 57.
    Rak, J., Molisz, W.: A new approach to provide the differentiated levels of network survivability under a double node failure. In: Proc. 11th International Conference on Transparent Optical Networks (ICTON’09), pp. 1–4 (2009)Google Scholar
  58. 58.
    Rak, J., Molisz, W.: Fast service restoration under shared protection at lightpath level in survivable WDM mesh grooming networks. Commun. Comput. Inf. Sci. 1, 362–377 (2007)CrossRefGoogle Scholar
  59. 59.
    Ramamurthy, S., Mukherjee, B.: Survivable WDM mesh networks, Part II – Restoration. In: Proc. IEEE Integrated Circuits Conference, pp. 2023–2030 (1999)Google Scholar
  60. 60.
    Ramamurthy, B., Sahasrabuddhe, L., Mukherjee, B.: Survivable WDM mesh networks. IEEE/OSA J. Lightwave Technol. 21(4), 870–883 (2003)CrossRefGoogle Scholar
  61. 61.
    Ran, Y.: Considerations and suggestions on improvement of communication network disaster countermeasures after the Wenchuan earthquake. IEEE Commun. Mag. 49(1), 44–47 (2011)CrossRefGoogle Scholar
  62. 62.
    Sack, A., Grover, W.D.: Hamiltonian p-cycles for fiber-level protection in semi-homogeneous, homogeneous, and optical networks. IEEE Netw. 18(2), 49–56 (2004)CrossRefGoogle Scholar
  63. 63.
    Schupke, D.: Multilayer and multidomain resilience in optical networks. Proc. IEEE 100(5), 1140–1148 (2012)CrossRefGoogle Scholar
  64. 64.
    Sichitiu, M.L., Kihl, M.: Inter-vehicle communication systems: a survey. IEEE Commun. Surv. Tutorials 10(2), 88–105 (2008)CrossRefGoogle Scholar
  65. 65.
    Siller, C.A., Shafi, M.: Synchronous Networking. IEEE Press, IEEE Communications Society, New York (1996)Google Scholar
  66. 66.
    Smith, P., Hutchison, D., Sterbenz, J.P.G., Schöller, M., Fessi, A., Karaliopoulos, M., Lac, M., Plattner, B.: Network resilience: a systematic approach. IEEE Commun. Mag. 49(7), 88–97 (2011)CrossRefGoogle Scholar
  67. 67.
    Steinder, M., Sethi, A.: A survey of fault localization techniques in computer networks. Sci. Comput. Program. 53(2), 165–194 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  68. 68.
    Sterbenz, J.P.G., Çetinkaya, E.K., Hameed, M.A., Jabbar, A., Qian, S., Rohrer, J.P.: Evaluation of network resilience, survivability, and disruption tolerance: analysis, topology generation, simulation, and experimentation. Telecommun. Syst. 52(2), 705–736 (2013)Google Scholar
  69. 69.
    Sterbenz, J.P.G., Hutchison, D., Çetinkaya, E.K., Jabbar, A., Rohrer, J.P., Schöller, M., Smith, P.: Resilience and survivability in communication networks: strategies, principles, and survey of disciplines. Comput. Netw. 54(8), 1245–1265 (2010)Google Scholar
  70. 70.
    Suurballe, J.W.: Disjoint paths in a network. Networks 4(2), 125–145 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  71. 71.
    Suurballe, J.W., Tarjan, R.E.: A quick method for finding shortest pairs of disjoint paths. Networks 14(2), 325–336 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
  72. 72.
    T1A1.2 Working Group: Reliability-related metrics and terminology for network elements in evolving communication networks. American National Standard for Telecommunications T1.R1.524-2004, Alliance for Telecommunications Industry Solutions – ATIS (2004)Google Scholar
  73. 73.
    Tapolcai, J., Chołda, P., Cinkler, T., Wajda, K., Jajszczyk, A., Autenrieth, A., Bodamer, S., Colle, D., Ferraris, G., Lonsethagen, H., Svinnset, I.-E., Verchere, D.: Quality of resilience (QoR): NOBEL approach to the multi-service resilience characterization. In: Proc. 2nd International Conference on Broadband Networks (BROADNETS’05), 2, pp. 1328–1337 (2005)Google Scholar
  74. 74.
    Urushidani, S., Aoki, M., Fukuda, K., Abe, S., Nakamura, M., Koibuchi, M., Ji, Y., Yamada, S.: Highly available network design and resource management of SINET4. Telecommun. Syst. 56(1), 33–47 (2014)CrossRefGoogle Scholar
  75. 75.
    Xiong, Y., Xu, D., Qiao, C.: Achieving fast and bandwidth-efficient shared-path protection. IEEE/OSA J. Lightwave Technol. 21(2), 365–371 (2003)CrossRefGoogle Scholar
  76. 76.
    Xu, D., Chen, Y., Xiong, Y., Qiao, C., He, X.: On the complexity of and algorithms for finding the shortest path with a disjoint counterpart. IEEE/ACM Trans. Networking 14(1), 147–158 (2006)CrossRefGoogle Scholar
  77. 77.
    Xu, D., Qiao, C., Xiong, Y.: An ultra-fast shared path protection scheme – Distributed partial information management – Part II. In: Proc. 10th IEEE International Conference on Network Protocols (IEEE ICNP’02), pp. 344–353 (2002)Google Scholar
  78. 78.
    Zhang, F., Zhong, W.: Performance evaluation of p-cycle based protection models for provisioning of dynamic multicast sessions in WDM networks. Photon. Netw. Commun. 16(2), 127–138 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jacek Rak
    • 1
  1. 1.Faculty of Electronics, Telecommunications, and InformaticsGdansk University of TechnologyGdanskPoland

Personalised recommendations