Skip to main content

Translational Medicine in Hepatitis B Virus: What Can We Learn from Clinical Samples?

  • Chapter
Hepatitis B Virus in Human Diseases

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 1982 Accesses

Abstract

Knowledge of the pathological mechanisms causing human diseases demands the use of in vitro and in vivo models, where different variables can be clearly controlled and where the impact of the effect of single genes, proteins, or cells can be consistently measured. Such reductionist approach cannot be applied in clinical samples, and for this reason experimental findings detected in clinical studies need to be defined in controlled models. On the other hand, it is questionable whether artificial experimental models can recapitulate natural disease. In this chapter we review the shortcomings of the current available in vivo and in vitro models of HBV infection and discuss how significant questions related to HBV pathogenesis can profit from a careful utilization of data derived from patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertoletti A, Ferrari C. Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection. Gut. 2012;61(12):1754–64.

    Article  CAS  PubMed  Google Scholar 

  2. Dandri M, Volz TK, Lütgehetmann M, Petersen J. Animal models for the study of HBV replication and its variants. J Clin Virol. 2005;34 Suppl 1:S54–62.

    Article  CAS  PubMed  Google Scholar 

  3. Cote PJ, Korba BE, Miller RH, Jacob JR, Baldwin BH, Hornbuckle WE, et al. Effects of age and viral determinants on chronicity as an outcome of experimental woodchuck hepatitis virus infection. Hepatology. 2000;31(1):190–200.

    Article  CAS  PubMed  Google Scholar 

  4. Jilbert AR, Miller DS, Scougall CA, Turnbull H, Burrell CJ. Kinetics of duck hepatitis B virus infection following low dose virus inoculation: one virus DNA genome is infectious in neonatal ducks. Virology. 1996;226(2):338–45.

    Article  CAS  PubMed  Google Scholar 

  5. Fourel G, Trepo C, Bougueleret L, Henglein B, Ponzetto A, Tiollais P, et al. Frequent activation of N-myc genes by hepadnavirus insertion in woodchuck liver tumours. Nature. 1990;347(6290):294–8.

    Article  CAS  PubMed  Google Scholar 

  6. Hsu T, Möröy T, Etiemble J, Louise A, Trepo C, Tiollais P, et al. Activation of c-myc by woodchuck hepatitis virus insertion in hepatocellular carcinoma. Cell. 1988;55(4):627–35.

    Article  CAS  PubMed  Google Scholar 

  7. Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity. 1996;4(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  8. Iannacone M, Sitia G, Ruggeri ZM, Guidotti LG. HBV pathogenesis in animal models: recent advances on the role of platelets. J Hepatol. 2007;46(4):719–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Yang PL, Althage A, Chung J, Maier H, Wieland S, Isogawa M, et al. Immune effectors required for hepatitis B virus clearance. Proc Natl Acad Sci. 2010;107(2):798–802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Liang S-Q, Du J, Yan H, Zhou Q-Q, Zhou Y, Yuan Z-N, et al. A mouse model for studying the clearance of hepatitis B virus in vivo using a luciferase reporter. PLoS ONE. 2013;8(4):e60005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lütgehetmann M, Bornscheuer T, Volz T, Allweiss L, Bockmann JH, Pollok JM, et al. Hepatitis B virus limits response of human hepatocytes to interferon. Gastroenterology. 2011;140(7):2074–83 e2.

    Article  PubMed  Google Scholar 

  12. Petersen J, Dandri M, Mier W, Lütgehetmann M, Volz T, von Weizsäcker F, et al. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat Biotechnol. 2008;26(3):335–41.

    Article  CAS  PubMed  Google Scholar 

  13. Chisari FV, Pinkert CA, Milich DR, Filippi P, McLachlan A, Palmiter RD, et al. A transgenic mouse model of the chronic hepatitis B surface antigen carrier state. Science. 1985;230(4730):1157–60.

    Article  CAS  PubMed  Google Scholar 

  14. Babinet C, Farza H, Morello D, Hadchouel M, Pourcel C. Specific expression of hepatitis B surface antigen (HBsAg) in transgenic mice. Science. 1985;230(4730):1160–3.

    Article  CAS  PubMed  Google Scholar 

  15. Urban S, Bartenschlager R, Kubitz R, Zoulim F. Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology. 2014;147(1):48–64.

    Article  CAS  PubMed  Google Scholar 

  16. Zeisel MB, Lucifora J, Mason WS, Sureau C, Beck J, Levrero M, et al. Towards an HBV cure: state-of-the-art and unresolved questions-report of the ANRS workshop on HBV cure. Gut. 2015;gutjnl–2014–308943.

    Google Scholar 

  17. Moriyama T, Guilhot S, Klopchin K, Moss B, Pinkert CA, Palmiter RD, et al. Immunobiology and pathogenesis of hepatocellular injury in hepatitis B virus transgenic mice. Science. 1990;248(4953):361–4.

    Article  CAS  PubMed  Google Scholar 

  18. Larkin J, Clayton M, Sun B, Perchonock CE, Morgan JL, Siracusa LD, et al. Hepatitis B virus transgenic mouse model of chronic liver disease. Nat Med. 1999;5(8):907–12.

    Article  CAS  PubMed  Google Scholar 

  19. Nakamoto Y, Guidotti LG, Kuhlen CV, Fowler P, Chisari FV. Immune pathogenesis of hepatocellular carcinoma. J Exp Med. 1998;188(2):341–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Guidotti LG, Matzke B, Schaller H, Chisari FV. High-level hepatitis B virus replication in transgenic mice. J Virol. 1995;69(10):6158–69.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Lin YJ, Huang LR, Yang HC, Tzeng HT, Hsu PN, Wu HL, et al. Hepatitis B virus core antigen determines viral persistence in a C57BL/6 mouse model. Proc Natl Acad Sci U S A. 2010;107(20):9340–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bissig KD, Wieland SF, Tran P, Isogawa M, Le TT, Chisari FV, et al. Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment. J Clin Invest. 2010;120(3):924–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Dandri M, Burda MR, Török E, Pollok JM, Iwanska A, Sommer G, et al. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology. 2001;33(4):981–8.

    Article  CAS  PubMed  Google Scholar 

  24. Bility MT, Cheng L, Zhang Z, Luan Y, Li F, Chi L, et al. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages. PLoS Pathog. 2014;10(3):e1004032.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Gripon P, Diot C, Thézé N, Fourel I, Loreal O, Brechot C, et al. Hepatitis B virus infection of adult human hepatocytes cultured in the presence of dimethyl sulfoxide. J Virol. 1988;62(11):4136–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Cao J, Yang E-B, Su J-J, Li Y, Chow P. The tree shrews: adjuncts and alternatives to primates as models for biomedical research. J Med Primatol. 2003;32(3):123–30.

    Article  CAS  PubMed  Google Scholar 

  27. von Weizsäcker F, Köck J, MacNelly S, Ren S, Blum HE, Nassal M. The tupaia model for the study of hepatitis B virus: direct infection and HBV genome transduction of primary tupaia hepatocytes. Methods Mol Med. 2004;96:153–61.

    Google Scholar 

  28. Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife. 2012;1:e00049–9.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Ni Y, Lempp FA, Mehrle S, Nkongolo S, Kaufman C, Fälth M, et al. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology. 2014;146(4):1070–83.

    Article  CAS  PubMed  Google Scholar 

  30. Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A. 2002;99(24):15655–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Shlomai A, Schwartz RE, Ramanan V, Bhatta A, de Jong YP, Bhatia SN, et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc Natl Acad Sci. 2014;111(33):12193–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Köck J, Rösler C, Zhang J-J, Blum HE, Nassal M, Thoma C. Generation of covalently closed circular DNA of hepatitis B viruses via intracellular recycling is regulated in a virus specific manner. PLoS Pathog. 2010;6(9):e1001082.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Lucifora J, Durantel D, Testoni B, Hantz O, Levrero M, Zoulim F. Control of hepatitis B virus replication by innate response of HepaRG cells. Hepatology. 2010;51(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  34. Mason WS, Jilbert AR, Summers J. Clonal expansion of hepatocytes during chronic woodchuck hepatitis virus infection. Proc Natl Acad Sci U S A. 2005;102(4):1139–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Mason WS, Low H-C, Xu C, Aldrich CE, Scougall CA, Grosse A, et al. Detection of clonally expanded hepatocytes in chimpanzees with chronic hepatitis B virus infection. J Virol. 2009;83(17):8396–408.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Mason WS, Liu C, Aldrich CE, Litwin S, Yeh MM. Clonal expansion of normal-appearing human hepatocytes during chronic hepatitis B virus infection. J Virol. 2010;84(16):8308–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Chu CM, Yeh CT, Sheen IS, Liaw YF. Subcellular localization of hepatitis B core antigen in relation to hepatocyte regeneration in chronic hepatitis B. Gastroenterology. 1995;109(6):1926–32.

    Article  CAS  PubMed  Google Scholar 

  38. Lütgehetmann M, Volz T, Köpke A, Broja T, Tigges E, Lohse AW, et al. In vivo proliferation of hepadnavirus-infected hepatocytes induces loss of covalently closed circular DNA in mice. Hepatology. 2010;52(1):16–24.

    Article  PubMed  Google Scholar 

  39. Mason WS, Xu C, Low H-C, Saputelli J, Aldrich CE, Scougall C, et al. The amount of hepatocyte turnover that occurred during resolution of transient hepadnavirus infections was lower when virus replication was inhibited with entecavir. J Virol. 2009;83(4):1778–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Asabe S, Wieland SF, Chattopadhyay PK, Roederer M, Engle RE, Purcell RH, et al. The size of the viral inoculum contributes to the outcome of hepatitis B virus infection. J Virol. 2009;83(19):9652–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Villet S, Billioud G, Pichoud C, Lucifora J, Hantz O, Sureau C, et al. In vitro characterization of viral fitness of therapy-resistant hepatitis B variants. Gastroenterology. 2009;136(1):168–76. e2.

    Article  CAS  PubMed  Google Scholar 

  42. Billioud G, Pichoud C, Parent R, Zoulim F. Decreased infectivity of nucleoside analogs-resistant hepatitis B virus mutants. J Hepatol. 2012;56(6):1269–75.

    Article  CAS  PubMed  Google Scholar 

  43. Zoulim F, Testoni B, Lebossé F. Kinetics of intrahepatic covalently closed circular DNA and serum hepatitis B surface antigen during antiviral therapy for chronic hepatitis B: lessons from experimental and clinical studies. Clin Gastroenterol Hepatol. 2013;11(8):1011–3.

    Article  CAS  PubMed  Google Scholar 

  44. Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH, et al. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol. 2003;77(1):68–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Boni C, Fisicaro P, Valdatta C, Amadei B, Di Vincenzo P, Giuberti T, et al. Characterization of Hepatitis B Virus (HBV)-specific T-Cell dysfunction in chronic HBV infection. J Virol. 2007;81(8):4215–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Maini MK, Boni C, Lee CK, Larrubia JR, Reignat S, Ogg GS, et al. The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. J Exp Med. 2000;191(8):1269–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Zhu Y, Yamamoto T, Cullen J, Saputelli J, Aldrich CE, Miller DS, et al. Kinetics of hepadnavirus loss from the liver during inhibition of viral DNA synthesis. J Virol. 2001;75(1):311–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Foster WK, Miller DS, Scougall CA, Kotlarski I, Colonno RJ, Jilbert AR. Effect of antiviral treatment with entecavir on age- and dose-related outcomes of duck hepatitis B virus infection. J Virol. 2005;79(9):5819–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Reaiche-Miller GY, Thorpe M, Low H-C, Qiao Q, Scougall CA, Mason WS, et al. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver. Virology. 2013;446(1-2):357–64.

    Article  CAS  PubMed  Google Scholar 

  50. Michalak TI, Pasquinelli C, Guilhot S, Chisari FV. Hepatitis B virus persistence after recovery from acute viral hepatitis. J Clin Invest. 1994;94(2):907.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Lucifora J, Xia Y, Reisinger F, Zhang K, Stadler D, Cheng X, et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science. 2014;343(6176):1221–8.

    Article  CAS  PubMed  Google Scholar 

  52. Chisari FV, Mason WS, Seeger C. Virology. Comment on “Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA”. Science. 2014;344(6189):1237–7.

    Article  CAS  PubMed  Google Scholar 

  53. Seeger C, Sohn JA. Targeting hepatitis B virus with CRISPR/Cas9. Mol Ther Nucleic Acids. 2014;3(12):e216.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Bertoletti A, Rivino L. Hepatitis B: future curative strategies. Curr Opin Infect Dis. 2014;27(6):528–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Belloni L, Allweiss L, Guerrieri F, Pediconi N, Volz T, Pollicino T, et al. IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J Clin Invest. 2012;122(2):529–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Protzer U, Maini MK, Knolle PA. Living in the liver: hepatic infections. 2012;1–13.

    Google Scholar 

  57. Zoulim F, Luangsay S, Durantel D. Targeting innate immunity: a new step in the development of combination therapy for chronic Hepatitis B. Gastroenterology. 2013;144(7):1342–4.

    Article  PubMed  Google Scholar 

  58. Crispe IN. Migration of lymphocytes into hepatic sinusoids. J Hepatol. 2012;57(1):218–20.

    Article  PubMed  Google Scholar 

  59. Peppa D, Micco L, Javaid A, Kennedy PTF, Schurich A, Dunn C, et al. Blockade of immunosuppressive cytokines restores NK cell antiviral function in chronic hepatitis B virus infection. PLoS Pathog. 2010;6(12):e1001227.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Sun C, Fu B, Gao Y, Liao X, Sun R, Tian Z, et al. TGF-β1 down-regulation of NKG2D/DAP10 and 2B4/SAP expression on human NK Cells contributes to HBV persistence. PLoS Pathog. 2012;8(3):e1002594.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Das A, Hoare M, Davies N, Lopes AR, Dunn C, Kennedy PTF, et al. Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection. J Exp Med. 2008;205(9):2111–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Jo J, Tan AT, Ussher JE, Sandalova E, Tang X-Z, Tan-Garcia A, et al. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver. PLoS Pathog. 2014;10(6):e1004210.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Liu F, Campagna M, Qi Y, Zhao X, Guo F, Xu C, et al. Alpha-interferon suppresses hepadnavirus transcription by altering epigenetic modification of cccDNA minichromosomes. PLoS Pathog. 2013;9(9):e1003613.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Kim K-A, Lin W, Tai AW, Shao R-X, Weinberg E, De Sa Borges CB, et al. Hepatic SOCS3 expression is strongly associated with non-response to therapy and race in HCV and HCV/HIV infection. J Hepatol. 2009;50(4):705–11.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Fletcher SP, Chin DJ, Ji Y, Iniguez AL, Taillon B, Swinney DC, et al. Transcriptomic analysis of the woodchuck model of chronic hepatitis B. Hepatology. 2012;56(3):820–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Koeberlein B, Hausen Zur A, Bektas N, Zentgraf H, Chin R, Nguyen LT, et al. Hepatitis B virus overexpresses suppressor of cytokine signaling-3 (SOCS3) thereby contributing to severity of inflammation in the liver. Virus Res. 2010;148(1-2):51–9.

    Article  CAS  PubMed  Google Scholar 

  67. Yim HJ, Lok AS-F. Natural history of chronic hepatitis B virus infection: What we knew in 1981 and what we know in 2005. Hepatology. 2006;43(S1):S173–81.

    Article  CAS  PubMed  Google Scholar 

  68. Milich DR, Jones JE, Hughes JL, Price J, Raney AK, McLachlan A. Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proc Natl Acad Sci U S A. 1990;87(17):6599–603.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Publicover J, Gaggar A, Nishimura S, Van Horn CM, Goodsell A, Muench MO, et al. Age-dependent hepatic lymphoid organization directs successful immunity to hepatitis B. J Clin Invest. 2013;123(9):3728–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Publicover J, Goodsell A, Nishimura S, Vilarinho S, Wang Z-E, Avanesyan L, et al. IL-21 is pivotal in determining age-dependent effectiveness of immune responses in a mouse model of human hepatitis B. J Clin Invest. 2011;121(3):1154–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Komatsu H, Inui A, Sogo T, Hiejima E, Tateno A, Klenerman P, et al. Cellular immunity in children with successful immunoprophylactic treatment for mother-to-child transmission of hepatitis B virus. BMC Infect Dis. 2010;10(1):103.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Koumbi L, Bertoletti A, Anastasiadou V, Machaira M, Goh W, Papadopoulos NG, et al. Hepatitis B-specific T helper cell responses in uninfected infants born to HBsAg+/HBeAg − mothers. Cell Mol Immunol. 2010;7(6):454–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Koumbi LJ, Papadopoulos NG, Anastassiadou V, Machaira M, Kafetzis DA, Papaevangelou V. Dendritic cells in uninfected infants born to hepatitis B virus-positive mothers. Clin Vaccine Immunol. 2010;17(7):1079–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Guo J, Gao Y, Guo Z, Zhang LR, Wang B, Wang SP. Frequencies of dendritic cells and Toll-like receptor 3 in neonates born to HBsAg-positive mothers with different HBV serological profiles. Epidemiol Infect. 2014;1–9.

    Google Scholar 

  75. Lau DTY, Negash A, Chen J, Crochet N, Sinha M, Zhang Y, et al. Accepted manuscript. Gastroenterology. 2012;1–39.

    Google Scholar 

  76. Beasley RP, Hwang LY, Lee GC, Lan CC, Roan CH, Huang FY, et al. Prevention of perinatally transmitted hepatitis B virus infections with hepatitis B immune globulin and hepatitis B vaccine. Lancet. 1983;2(8359):1099–102.

    Article  CAS  PubMed  Google Scholar 

  77. Mackie CO, Buxton JA, Tadwalkar S, Patrick DM. Hepatitis B immunization strategies: timing is everything. Can Med Assoc J. 2009;180(2):196–202.

    Article  Google Scholar 

  78. Webster GJM, Reignat S, Brown D, Ogg GS, Jones L, Seneviratne SL, et al. Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy. J Virol. 2004;78(11):5707–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Kennedy PTF, Sandalova E, Jo J, Gill U, Ushiro-Lumb I, Tan AT, et al. Preserved T-cell function in children and young adults with immune-tolerant chronic hepatitis B. Gastroenterology. 2012;143(3):637–45.

    Article  CAS  PubMed  Google Scholar 

  80. Wang HY, Chien MH, Huang HP, Chang HC, Wu CC, Chen PJ, et al. Distinct hepatitis B virus dynamics in the immunotolerant and early immunoclearance phases. J Virol. 2010;84(7):3454–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Bertoletti A, Kennedy PT. The immune tolerant phase of chronic HBV infection: new perspectives on an old concept. Cell Mol Immunol. 2014;12(3):258–63.

    Article  PubMed  Google Scholar 

  82. Hong M, Sandalova E, Low D, et al. Trained immunity in newborn infants of HBV-infected mothers. Nature Communications. 2015;6:6588. doi:10.1038/ncomms7588.

    Google Scholar 

  83. Op den Brouw ML, Binda RS, van Roosmalen MH, Protzer U, Janssen HLA, van der Molen RG, et al. Hepatitis B virus surface antigen impairs myeloid dendritic cell function: a possible immune escape mechanism of hepatitis B virus. Immunology. 2009;126(2):280–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Woltman AM, Op den Brouw ML, Biesta PJ, Shi CC, Janssen HLA. Hepatitis B virus lacks immune activating capacity, but actively inhibits plasmacytoid dendritic cell function. PLoS ONE. 2011;6(1):e15324.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Xu Y, Hu Y, Shi B, Zhang X, Wang J, Zhang Z, et al. HBsAg inhibits TLR9-mediated activation and IFN-α production in plasmacytoid dendritic cells. Mol Immunol. 2009;46(13):2640–6.

    Article  CAS  PubMed  Google Scholar 

  86. Shi B, Ren G, Hu Y, Wang S, Zhang Z, Yuan Z. HBsAg inhibits IFN-α production in plasmacytoid dendritic cells through TNF-α and IL-10 induction in monocytes. PLoS ONE. 2012;7(9):e44900.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Visvanathan K, Skinner NA, Thompson AJV, Riordan SM, Sozzi V, Edwards R, et al. Regulation of Toll-like receptor-2 expression in chronic hepatitis B by the precore protein. Hepatology. 2006;45(1):102–10.

    Article  Google Scholar 

  88. Wu J, Meng Z, Jiang M, Pei R, Trippler M, Broering R, et al. Hepatitis B virus suppresses toll-like receptor-mediated innate immune responses in murine parenchymal and nonparenchymal liver cells. Hepatology. 2009;49(4):1132–40.

    Article  CAS  PubMed  Google Scholar 

  89. Martinet J, Dufeu-Duchesne T, Bruder-Costa J, Larrat S, Marlu A, Leroy V, et al. Accepted manuscript. Gastroenterology. 2012;1–34.

    Google Scholar 

  90. Andrade BB, Santos CJN, Camargo LM, Souza-Neto SM, Reis-Filho A, Clarêncio J, et al. Hepatitis B infection is associated with asymptomatic malaria in the Brazilian Amazon. PLoS ONE. 2011;6(5):e19841.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Oakley MS, Sahu BR, Lotspeich-Cole L, Solanki NR, Majam V, Pham PT, et al. The transcription factor T-bet regulates parasitemia and promotes pathogenesis during Plasmodium berghei ANKA murine malaria. J Immunol. 2013;191(9):4699–708.

    Article  CAS  PubMed  Google Scholar 

  92. Granowitz EV, Porat R, Mier JW, Orencole SF, Kaplanski G, Lynch EA, et al. Intravenous endotoxin suppresses the cytokine response of peripheral blood mononuclear cells of healthy humans. J Immunol. 1993;151(3):1637–45.

    CAS  PubMed  Google Scholar 

  93. Sandalova E, Laccabue D, Boni C, Watanabe T, Tan A, Zong HZ, et al. Increased levels of arginase in patients with acute hepatitis B suppress antiviral T cells. Gastroenterology. 2012;143(1):78–87 e3.

    Article  CAS  PubMed  Google Scholar 

  94. Gehring AJ, Haniffa M, Kennedy PT, Ho ZZ, Boni C, Shin A, et al. Mobilizing monocytes to cross-present circulating viral antigen in chronic infection. J Clin Invest. 2013;123(9):3766–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Bertoletti M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bertoletti, A., Zoulim, F. (2016). Translational Medicine in Hepatitis B Virus: What Can We Learn from Clinical Samples?. In: Liaw, YF., Zoulim, F. (eds) Hepatitis B Virus in Human Diseases. Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-22330-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22330-8_8

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-22329-2

  • Online ISBN: 978-3-319-22330-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics