Cross-Process Production Control by Camera-Based Quality Management Inside a Logistic Assistance System

Chapter
Part of the Lecture Notes in Logistics book series (LNLO)

Abstract

A holistic integration of quality measurement into process control has a huge potential especially for SMEs in the areas of production and logistics. Since poor results of quality measurements can influence the whole order-to-delivery process the quality data should be included as soon as possible in the decision process as part of a superior order control. This paper presents results of the Supply Chain Execution project that developed a low-cost camera-based quality measurement system and integrated it into a Logistic Assistant System that allows for simulation-based process control considering data from the whole supply chain. This lean low-cost approach, which does not depend on sophisticated IT-infrastructures and management systems, yields results that are especially interesting for SMEs.

Keywords

Quality management Production control Logistic assistance system Camera-based computer-aided quality assurance 

References

  1. Ansari-Ch F, Dienst S, Uhr P, Fathi M (2011) Using data analysis for discovering improvement potentials in production process, Auburn, ALGoogle Scholar
  2. Benes G, Groh PE (2012) Grundlagen des Qualitätsmanagements, 2, akt. Aufl, Fachbuchverl. Leipzig im Carl Hanser Verl, MünchenCrossRefGoogle Scholar
  3. Bockholt F, Raabe W, Toth M (2011) Logistic assistance systems for collaborative supply chain planning. Int J Simul Process Model 6(4):297CrossRefGoogle Scholar
  4. Bornewasser M, Zülch G (eds) (2013) Arbeitszeit—Zeitarbeit. Springer, WiesbadenGoogle Scholar
  5. Brüggemann H, Bremer P (2012) Grundlagen Qualitätsmanagement. Springer, WiesbadenCrossRefGoogle Scholar
  6. Deiseroth J, Klennert M, Thissen S, Schwede C, Toth M (2013) Virtual experiment fields for logistical problem solving. In: Proceedings of the 17th Cambridge international manufacturing symposiumGoogle Scholar
  7. Dietrich S, Wilczek M (2002) Kontinuierliche Prozessüberwachung—inline-Partikelmessung bei der Tieftemperatur-Mahlung. Verfahrenstechnik 36:48–49Google Scholar
  8. Dobb FP (2004) ISO 9001:2000 quality registration step-by-step, 3rd edn. Elsevier, Amsterdam, BostonGoogle Scholar
  9. Dobrzanski LA, Krupinski M, Maniara R, Sokolowski JH (2007) Computer aided method for quality control of automotive Al–Si–Cu cast components. J Achievements Mater Manuf Eng 24:151–154Google Scholar
  10. Hegmanns T, Schwede C, Motta M, Henke M (2014) Model-based technologies for tool support in supply chain risk management. In: Delfmann W, Wimmer T (eds) Proceedings of the 7th international scientific symposium on logistics, pp 135–152Google Scholar
  11. Hietaniemi R, López MB, Hannuksela J, Silvén O (2014) A real-time imaging system for lumber strength prediction. Forest Prod J 64(3–4):126–133CrossRefGoogle Scholar
  12. Kuhn A, Hellingrath B, Hinrichs J (2008) Logistische Assistenzsysteme. In: Software in der Logistik: Weltweit sichere supply chains. [Anforderungen, Funktionalitäten und Anbieter in den Bereichen WMS, ERP, TMS und SCM], Logistik Praxis, 1. Aufl, Huss-Verl., München, pp 20–26Google Scholar
  13. Lestander TA, Holmberg C, Stenberg L, Lehtonen R (2012) Towards multivariate statistical process control in the wood pellet industry. Biomass Bioenergy 45:152–158CrossRefGoogle Scholar
  14. Megahed FM, Camelio JA (2012) Real-time fault detection in manufacturing environments using face recognition techniques. J Intell Manuf 23(3):393–408CrossRefGoogle Scholar
  15. Mohanty RP (2008) Quality management practices, 1st edn. Excel Books, New DelhiGoogle Scholar
  16. Molder A, Martens O (2011) Image processing in the woodworking industry: challenges, solutions and platforms. Electron Electr Eng 113(7):43–46Google Scholar
  17. Montgomery DC (2008) Statistical quality control: A modern introduction, 6th edn. International student version, Wiley, HobokenGoogle Scholar
  18. Müller-Ohe H, von der Schwede C, Toth M (2014) A logistics assistant system for customizing market oriented build-to-stock cars for dealers in the automotive industry. In: Delfmann W, Wimmer T (eds) Proceedings of the 7th international scientific symposium on logistics, pp 469–505Google Scholar
  19. Oakland JS (2014) TQM: text with cases, 4th ednGoogle Scholar
  20. Rosenberger M, Schellhorn M, Linß G, Schumann M, Werner P, Lübbecke S (2010) Quality control for springs during the production process based on image processing technologies. In: Baralt J, (ed) Proceedings of international institute of informatics and systemics, Orlando, FlaGoogle Scholar
  21. Vieweg O (2014) QUERIS—Das Managementsystem für KMUs. Available at: http://www.queris.de/
  22. Winham I (2012) When SMEs succeed, Europe succeeds. A view from Ian Winham, CIO, Ricoh Europe. Available at: http://www.ricoh-europe.com/about-ricoh/news/2012/When_SMEs_succeed_Europe_succeeds.aspx
  23. Yüzgülec G, Groß S, Ciprina A, Zajac M, Langanke D (2013) Supply chain execution supported by logistics IT services. In: Clausen U, Hompel M, Klumpp M (eds) Efficiency and logistics. Lecture Notes in Logistics, Springer, Berlin, pp 217–227CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Fraunhofer Institute for Material Flow and LogisticsDortmundGermany

Personalised recommendations