Skip to main content

Applications of Nanocatalysis in Boron Chemistry

  • Chapter
Boron

Abstract

The rapid progress of nanoscience and nanotechnology opened up new vistas of application for nanomaterials. Nanocatalysis is a novel trend in the area of catalysis benefited by the advancements of nanotechnology. Developments in the field of boron chemistry have also been greatly influenced by nanocatalysis. In this chapter, we report recent updates on different boron compounds being either synthesized or utilized with the help of nanocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao G (2004) Nanostructures & nanomaterials: synthesis, properties & applications. Imperial College Press, London

    Book  Google Scholar 

  2. (a) Viswanathan B (2009) Catalysis: selected applications, Alpha Science International Ltd., Oxford, UK; (b) Cole-Hamilton D (2003) Homogeneous catalysis – new approaches to catalyst separation, recovery, and recycling. Science 299:1702–1706

    Google Scholar 

  3. (a) Rase HF (2000) Handbook of commercial catalysts: Heterogeneous catalysts. CRC Press, New York; (b) Yoon TJ, Lee W, Oh Y-S, Lee J-K (2003) Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. New J Chem 27:227–229

    Google Scholar 

  4. Goesmann H, Feldmann C (2010) Nanoparticulate functional materials. Angew Chem Int Ed 49:1362–1395

    Article  CAS  Google Scholar 

  5. (a) Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910; (b) Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films 518:3127–3150; (c) Paskevicius M, Webb J, Pitt MP et al (2009) Mechanochemical synthesis of aluminium nanoparticles and their deuterium sorption properties to 2kbar. J Alloys Compd 481:595–599; (d) Huot J, Ravnsbæk DB, Zhang J et al (2013) Mechanochemical synthesis of hydrogen storage materials. Prog Mater Sci 58: 30–75; (e) Yu W, Porosoff MD, Chen JG (2012) Review of Pt-based bimetallic catalysis: From model surfaces to supported catalysts. Chem Rev 112:5780–5817; (f) Jiang H-L, Xu Q (2011) Recent progress in synergistic catalysis over heterometallic nanoparticles. J Mater Chem 21:13705–13725

    Google Scholar 

  6. (a) Zhu Y, Lee CN, Kemp RA et al (2008) Latest developments in the catalytic application of nanoscaled neutral group 8–10 metals. Chem Asian J 3:650–662; (b) Yan N, Xiao C, Kou Y (2010) Transition metal nanoparticle catalysis in green solvents. Coord Chem Rev 254:1179–1218

    Google Scholar 

  7. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483

    Article  CAS  Google Scholar 

  8. Reetz MT, Breinbauer R, Wanninger K (1996) Suzuki and fleck reactions catalyzed by preformed palladium clusters and palladium/nickel bimetallic clusters. Tetrahedron Lett 37:4499–4502

    Article  CAS  Google Scholar 

  9. Reetz MT, Westermann E (2000) Phosphane-free palladium-catalyzed coupling reactions: The decisive role of Pd nanoparticles. Angew Chem Int Ed 39:165–168

    Article  CAS  Google Scholar 

  10. Yin L, Liebscher J (2007) carbon−carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107:133–173

    Article  CAS  Google Scholar 

  11. Fihri A, Bouhrara M, Nekoueishahraki B et al (2011) Nanocatalysts for Suzuki cross-coupling reactions. Chem Soc Rev 40:5181–5203

    Article  CAS  Google Scholar 

  12. Moreno-Manas M, Pleixats R (2003) Formation of carbon−carbon bonds under catalysis by transition-metal nanoparticles. Acc Chem Res 36:638–643

    Article  CAS  Google Scholar 

  13. Narayanan R (2010) Recent advances in noble metal nanocatalysts for Suzuki and Heck cross-coupling reactions. Molecules 15:2124–2138

    Article  CAS  Google Scholar 

  14. Ranu BC, Dey R, Chatterjee T, Ahammed S (2012) Copper nanoparticle-catalyzed carbon-carbon and carbon-heteroatom bond formation with a greener perspective. ChemSusChem 5:22–44

    Article  CAS  Google Scholar 

  15. Chen Y-H, Hung H-H, Huang MH (2009) Seed-mediated synthesis of palladium nanorods and branched nanocrystals and their use as recyclable Suzuki coupling reaction catalysts. J Am Chem Soc 131:9114–9121

    Article  CAS  Google Scholar 

  16. Piao Y, Jang Y (2007) Facile aqueous-phase synthesis of uniform palladium nanoparticles of various shapes and sizes. Small 3:255–260

    Article  CAS  Google Scholar 

  17. Zhang J, Feng C, Deng Y et al (2014) Shape-controlled synthesis of palladium single-crystalline nanoparticles: the effect of HCl oxidative etching and facet-dependent catalytic properties. Chem Mater 26:1213–1218

    Article  CAS  Google Scholar 

  18. Zheng Z, Li H, Liu T, Cao R (2010) Monodisperse noble metal nanoparticles stabilized in SBA-15: synthesis, characterization and application in microwave-assisted Suzuki–Miyaura coupling reaction. J Catal 270:268–274

    Article  CAS  Google Scholar 

  19. Thathagar MB, Beckers J, Rothenberg G (2002) Copper-catalyzed Suzuki cross-coupling using mixed nanocluster catalysts. J Am Chem Soc 124:11858–11859

    Article  CAS  Google Scholar 

  20. Kim S-J, Oh S-D, Lee S, Choi S-H (2008) Radiolytic synthesis of Pd-M (M = Ag, Ni, and Cu)/C catalyst and their use in Suzuki-type and Heck-type reaction. J Indus Eng Chem 14:449–456

    Article  CAS  Google Scholar 

  21. Kim M-R, Choi S-H (2009) One-step synthesis of Pd-M/ZnO (M = Ag, Cu, and Ni) catalysts by γ-irradiation and their use in hydrogenation and Suzuki Reaction. J Nanomater 302919:1–7

    Google Scholar 

  22. Jana R, Pathak TP, Sigman MS (2011) Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem Rev 111:1417–1492

    Article  CAS  Google Scholar 

  23. Lipshutz BH, Tasler S, Chrisman W et al (2003) On the nature of the ‘heterogeneous’ catalyst: Nickel-on-charcoal. J Org Chem 68:1177–1189

    Article  CAS  Google Scholar 

  24. Park J, Kang E, Son SU et al (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv Mater 17:429–434

    Article  CAS  Google Scholar 

  25. Rosen BM, Quasdorf KW, Wilson DA et al (2011) Nickel-catalyzed cross-couplings involving carbon-oxygen bonds. Chem Rev 111:1346–1416

    Article  CAS  Google Scholar 

  26. Gniewek A, Trzeciak AM (2013) Rh(0) nanoparticles: Synthesis, structure and catalytic application in Suzuki–Miyaura reaction and hydrogenation of benzene. Top Catal 56:1239–1245

    Article  CAS  Google Scholar 

  27. Han J, Liu Y, Guo R (2009) Facile synthesis of highly stable gold nanoparticles and their unexpected excellent catalytic activity for Suzuki-Miyaura cross-coupling reaction in water. J Am Chem Soc 131:2060–2061

    Article  CAS  Google Scholar 

  28. Garcia P, Malacria M, Aubert C et al (2010) Gold-catalyzed cross-couplings: New opportunities for C-C bond formation. Chem Cat Chem 2:493–497

    CAS  Google Scholar 

  29. Li Y, Fan X, Qi J et al (2010) Gold nanoparticles-graphene hybrids as active catalysts for Suzuki reaction. Mat Res Bull 45:1413–1418

    Article  CAS  Google Scholar 

  30. Cravotto G, Beggiato M, Penoni A et al (2005) High-intensity ultrasound and microwave, alone or combined, promote Pd/C-catalyzed aryl–aryl couplings. Tetrahedron Lett 46:2267–2271

    Article  CAS  Google Scholar 

  31. Chen J-S, Krogh-Jespersen K, Khinast JG (2008) Base- and ligand-free heterogeneously catalyzed homocoupling of arylboronic acids. J Mol Catal A285:14–19

    Article  Google Scholar 

  32. Prastaro A, Ceci P, Chiancone E et al (2010) Homocoupling of arylboronic acids and potassium aryltrifluoroborates catalyzed by protein-stabilized palladium nanoparticles under air in water. Tetrahedron Lett 51:2550–2552

    Article  CAS  Google Scholar 

  33. Tsunoyama H, Sakurai H, Ichikuni N et al (2004) Colloidal gold nanoparticles as catalyst for carbon-carbon bond formation: Application to aerobic homocoupling of phenylboronic acid in water. Langmuir 20:11293–11296

    Article  CAS  Google Scholar 

  34. Sakurai H, Tsunoyama H, Tsukuda T et al (2007) Oxidative homo-coupling of potassium aryltrifluoroborates catalyzed by gold nanocluster under aerobic conditions. J Organomet Chem 692:368–374

    Article  CAS  Google Scholar 

  35. Dhital RN, Sakurai H (2012) Anomalous efficacy of bimetallic Au/Pd nanoclusters in C–Cl bond activation and formal metathesis-type C–B bond activation at room temperature. Chem Lett 41:630–632

    Article  CAS  Google Scholar 

  36. Willis NG, Guzman J (2008) Influence of the support during homocoupling of phenylboronic acid catalyzed by supported gold. Appl Catal A 339:68–75

    Article  CAS  Google Scholar 

  37. Wang L, Zhang W, Su DS et al (2012) Supported Au nanoparticles as efficient catalysts for aerobic homocoupling of phenylboronic acid. Chem Commun 48:5476–5478

    Article  CAS  Google Scholar 

  38. Chaicharoenwimolkul L, Munmai A, Chairam S et al (2008) Effect of stabilizing ligands bearing ferrocene moieties on the gold nanoparticle-catalyzed reactions of arylboronic acids. Tetrahedron Lett 49:7299–7302

    Article  CAS  Google Scholar 

  39. Zheng J, Lin S, Zhu X et al (2012) Reductant-directed formation of PS–PAMAM-supported gold nanoparticles for use as highly active and recyclable catalysts for the aerobic oxidation of alcohols and the homocoupling of phenylboronic acids. Chem Commun 48:6235–6237

    Article  CAS  Google Scholar 

  40. Dhital RN, Murugadoss A, Sakurai H (2012) Dual roles of polyhydroxy matrices in the homocoupling of arylboronic acids catalyzed by gold nanoclusters under acidic conditions. Chem Asian J 7:55–59

    Article  CAS  Google Scholar 

  41. Sophiphun O, Wittayakun J, Dhital RN et al (2012) Gold/palladium bimetallic alloy nanoclusters stabilized by chitosan as highly efficient and selective catalysts for homocoupling of arylboronic acid. Aust J Chem 65:1238–1243

    Article  CAS  Google Scholar 

  42. Dhital RN, Kamonsatikul C, Somsook E et al (2013) Aryl iodides as strong inhibitors in gold and gold-based bimetallic quasi-homogeneous catalysis. Chem Commun 49:2542–2544

    Article  CAS  Google Scholar 

  43. Khedkar MV, Tambade PJ, Qureshi ZS, Bhanage BM (2010) Pd/C: an efficient, heterogeneous and reusable catalyst for phosphane-free carbonylative Suzuki coupling reactions of aryl and heteroaryl iodides. Eur J Org Chem 36:6981–6986

    Article  Google Scholar 

  44. Oh AB, Vangala VR, Chen CS et al (2014) Cross-coupling reaction between arylboronic acids and carboranyl iodides catalyzed by graphene oxide (GO)-supported Pd(0) recyclable nanoparticles for the synthesis of carboranylaryl ketones. Dalton Trans 43:5014–5020

    Article  Google Scholar 

  45. Smith K, Pelter A (1991) A hydroboration of C = C and C ≡ C. In: Trost BM, Fleming I (eds) Comprehensive organic synthesis, vol 8. Pergamon, Oxford, pp 703–731

    Chapter  Google Scholar 

  46. Miyaura N (2001) Hydroboration, diboration, silylboration, and stannylboration. In: Togni A, Grutzmacher H (eds) Catalytic hetero-functionalization from hydroboration to hydrozirconation. Wiley-VCH, Weinheim, Germany, p1

    Google Scholar 

  47. Bose SK, Fucke K, Liu L et al (2014) Zinc-catalyzed borylation of primary, secondary and tertiary alkyl halides with alkoxy diboron reagents at room temperature. Angew Chem Int Ed 53:1799–1803

    Article  CAS  Google Scholar 

  48. Zhang L, Zuo Z, Leng X, Huang Z (2014) A cobalt-catalyzed alkene hydroboration with pinacolborane. Angew Chem Int Ed 53:2696–2700

    Article  CAS  Google Scholar 

  49. Takaya J, Iwasawa N (2012) Catalytic, direct synthesis of bis(boronate) compounds. ACS Catal 2:1993–2006

    Article  CAS  Google Scholar 

  50. Luo Y, Roy ID, Madec AGE, Lam HW (2014) Enantioselective synthesis of allylboronates and allylic alcohols by copper-catalyzed 1,6-boration. Angew Chem Int Ed 53:4186–4190

    Article  CAS  Google Scholar 

  51. Greenhalgh MD, Thomas SP (2013) Chemo-, regio-, and stereoselective iron-catalysed hydroboration of alkenes and alkynes. Chem Commun 49:11230–11232

    Article  CAS  Google Scholar 

  52. Ramírez J, Sanaú M, Fernández E (2008) Gold(0) nanoparticles for selective catalytic diboration. Angew Chem Int Ed 47:5194–5197

    Article  Google Scholar 

  53. Grirrane A, Corma A, Garcia H (2011) Stereoselective single (copper) or double (platinum) boronation of alkynes catalyzed by magnesia-supported copper oxide or platinum nanoparticles. Chem Eur J 17:2467–2478

    Article  CAS  Google Scholar 

  54. Zhu Y, Jang SHA, Tham YH et al (2012) An efficient and recyclable catalytic system comprising nano-iridium(0) and a pyridinium salt of nido-carboranyldiphosphine for the synthesis of one-dimensional boronate esters via hydroboration reaction. Organometallics 31:2589–2596

    Article  CAS  Google Scholar 

  55. Armaroli N, Vincenzo B (2011) The Hydrogen Issue. ChemSusChem 4:21–36

    Article  CAS  Google Scholar 

  56. Li C, Peng P, Zhou DW, Wan L (2011) Research progress in LiBH4 for hydrogen storage: A review. Int J Hydrogen Energy 36:14512–14526

    Article  CAS  Google Scholar 

  57. Goudon JP, Bernard F, Renouard J, Yvart P (2010) Experimental investigation on lithium borohydride hydrolysis. Int J Hydrogen Energy 35:11071–11076

    Article  CAS  Google Scholar 

  58. Sahin Ö, Dolaş H, Özdemir M (2007) The effect of various factors on the hydrogen generation by hydrolysis reaction of potassium borohydride. Int J Hydrogen Energy 32:2330–2336

    Article  CAS  Google Scholar 

  59. Xu D, Wang H, Guo Q, Ji S (2011) Catalytic behavior of carbon supported Ni–B, Co–B and Co–Ni–B in hydrogen generation by hydrolysis of KBH4. Fuel Process Tech 92:1606–1610

    Article  CAS  Google Scholar 

  60. Akdim O, Demirci UB, Miele P (2011) Deactivation and reactivation of cobalt in hydrolysis of sodium borohydride. Int J Hydrogen Energy 36:13669–13675

    Article  CAS  Google Scholar 

  61. Liu BH, Li ZP (2009) A review: Hydrogen generation from borohydride hydrolysis reaction. J Power Sour 187:527–534

    Article  CAS  Google Scholar 

  62. Schlesinger HI, Brown HC, Finholt AE et al (1953) Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. J Am Chem Soc 75:215–219

    Article  CAS  Google Scholar 

  63. Merrero-Alfonso E, Gray JR, Davis TA, Matthews MA (2007) Hydrolysis of sodium borohydride with steam. Int J Hydrogen Energy 32:4717–4722

    Article  Google Scholar 

  64. Ozkar S, Zahmakiran M (2005) Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst. J Alloys Compd 404–406:728–731

    Article  Google Scholar 

  65. Bai Y, Wu C, Wu F, Yi B (2006) Carbon-supported platinum catalysts for on-site hydrogen generation from NaBH4 solution. Mater Lett 60:2236–2239

    Article  CAS  Google Scholar 

  66. Dai HB, Liang Y, Wang P et al (2008) High-performance cobalt–tungsten–boron catalyst supported on Ni foam for hydrogen generation from alkaline sodium borohydride solution. Int J Hydrogen Energy 33:4405–4412

    Article  CAS  Google Scholar 

  67. Au M, Spencer W, Jurgensen A, Zeigler C (2008) Hydrogen storage properties of modified lithium borohydrides. J Alloys Compd 462:303–309

    Article  CAS  Google Scholar 

  68. Ward PA, Teprovich JA Jr, Peters B et al (2013) Reversible hydrogen storage in a LiBH4−C60 Nanocomposite. J Phys Chem C 117:22569–22575

    Article  CAS  Google Scholar 

  69. Brun N, Janot R, Sanchez C et al (2010) Preparation of LiBH4@carbon micro–macrocellular foams: tuning hydrogen release through varying microporosity. Energy Env Sci 3:824–830

    Article  CAS  Google Scholar 

  70. Christian ML, Aguey-Zinsou K-F (2012) core-shell strategy leading to high reversible hydrogen storage capacity for NaBH4. ACS Nano 6:7739–7751

    Article  CAS  Google Scholar 

  71. Moussa G, Moury R, Demirci UB et al (2013) Boron based hydrides for chemical hydrogen storage. Int J Energy Res 37:825–842

    Article  CAS  Google Scholar 

  72. Petit J-F, Moussa G, Demirci UB et al (2014) Hydrazine borane-induced destabilization of ammonia borane, and vice versa. J Hazard Mater 278:158–162

    Article  CAS  Google Scholar 

  73. Yang L, Luo W, Cheng G (2013) Graphene-supported Ag-based core−shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane. ACS Appl Mater Interfaces 5:8231–8240

    Article  CAS  Google Scholar 

  74. Wang J, Qin YL, Liu X, Zhang XB (2012) In situ synthesis of magnetically recyclable graphene-supported Pd@Co core–shell nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane. J Mater Chem 22:12468–12470

    Article  CAS  Google Scholar 

  75. Cao N, Su J, Hong X et al (2014) In situ facile synthesis of Ru-based core-shell nanoparticles supported on carbon black and their high catalytic activity in the dehydrogenation of amine-boranes. Chem An Asian J 9:562–571

    Article  CAS  Google Scholar 

  76. Chen GZ, Desinan S, Nechache R et al (2011) Bifunctional catalytic/magnetic Ni@Ru core-shell nanoparticles. Chem Commun 47:6308–6310

    Article  CAS  Google Scholar 

  77. Yao Q, Shi W, Feng G et al (2014) Ultrafine Ru nanoparticles embedded in SiO2 nanospheres: highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. J Power Sour 257:293–299

    Article  CAS  Google Scholar 

  78. Liang HY, Chen GZ, Desinan S et al (2012) In situ facile synthesis of ruthenium nanocluster catalyst supported on carbon black for hydrogen generation from the hydrolysis of ammonia-borane. Int J Hydrogen Energy 37:17921–17927

    Article  CAS  Google Scholar 

  79. Dai HB, Kang XD, Wang P (2010) Ruthenium nanoparticles immobilized in montmorillonite used as catalyst for methanolysis of ammonia borane. Int J Hydrogen Energy 35:10317–10323

    Article  CAS  Google Scholar 

  80. Caliskan S, Zahmakıran M, Özkar S (2010) Zeolite confined rhodium(0) nanoclusters as highly active, reusable, and long-lived catalyst in the methanolysis of ammonia-borane. Appl Catal B 93:387–394

    Article  CAS  Google Scholar 

  81. Sun D, Mazumder V, Metin Ö, Sun S (2012) Methanolysis of ammonia borane by CoPd nanoparticles. ACS Cat 2:1290–1295

    Article  CAS  Google Scholar 

  82. Gulcan M, Zahmakiran M, Özkar S (2014) Palladium(0) nanoparticles supported on metal organic framework as highly active and reusable nanocatalyst in dehydrogenation of dimethylamine-borane. Appl Catal B Env 147:394–401

    Article  CAS  Google Scholar 

  83. Zahmakiran M, Özkar S (2009) Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine−borane. Inorg Chem 48:8955–8964

    Article  CAS  Google Scholar 

  84. Zahmakiran M, Tristany M, Philippot K et al (2010) Aminopropyltriethoxysilane stabilized ruthenium(0) nanoclusters as an isolable and reusable heterogeneous catalyst for the dehydrogenation of dimethylamine–borane. Chem Commun 46:2938–2940

    Article  CAS  Google Scholar 

  85. (a) Karahan S, Zahmakran M, Özkar S (2011) Catalytic hydrolysis of hydrazine borane for chemical hydrogen storage: Highly efficient and fast hydrogen generation system at room temperature. Int J Hydrogen Energy 36:4958–4966; (b) Clik D, Karahan S, Zahmakran M, Özkar S (2012) Hydrogen generation from the hydrolysis of hydrazine-borane catalyzed by rhodium(0) nanoparticles supported on hydroxyapatite. Int J Hydrogen Energy 37:5143–5151; (c) Zhang DC, Aranishi K, Singh AK et al (2012) The synergistic effect of Rh–Ni catalysts on the highly-efficient dehydrogenation of aqueous hydrazine borane for chemical hydrogen storage. Chem Commun 48:11945–11947

    Google Scholar 

  86. (a) Sencanli S, Karahan S, Özkar S (2013) Poly(4-styrenesulfonic acid-co-maleic acid) stabilized nickel(0) nanoparticles: Highly active and cost effective catalyst in hydrogen generation from the hydrolysis of hydrazine borane. Int J Hydrogen Energy 38:14693–14703; (b) Hannauer J, Akdim O, Demirci UB et al (2011) High-extent dehydrogenation of hydrazine borane N2H4BH3 by hydrolysis of BH3 and decomposition of N2H4. Energy Environ Sci 4:3355–3358; (c) Li C, Dou Y, Liu J et al (2013) Synthesis of supported Ni@(RhNi-alloy) nanocomposites as an efficient catalyst towards hydrogen generation from N2H4BH3. Chem Commun 49:9992–9994

    Google Scholar 

  87. Nilsson GN, Kerr WJ (2010) The development and use of novel iridium complexes as catalysts for ortho-directed hydrogen isotope exchange reactions. J Labelled Compd Radiopharm 53:662–667

    Article  CAS  Google Scholar 

  88. Soloway AH, Tjarks W, Barnum BA et al (1998) The chemistry of neutron capture therapy. Chem Rev 98:1515–1562

    Article  CAS  Google Scholar 

  89. Hosmane NS, Maguire JA, Zhu Y (2011) Boron and Gadolinium Neutron Capture Therapy for Cancer Treatment. World Scientific Pub. Co. Inc., New Jersey.

    Google Scholar 

  90. Hoel EL, Hawthorne MF (1974) Transition metal catalyzed exchange of deuterium gas with terminal boron-hydrogen bonds in carboranes, metallocarboranes, and other boron compounds. J Am Chem Soc 96:4676–4677

    Article  CAS  Google Scholar 

  91. Hoel EL, Talebinsab-Savari M, Hawthorne MF (1977) Deuterium exchange at terminal boron-hydrogen bonds catalyzed by certain transition metal complexes. A qualitative study of selectivity and mechanism. J Am Chem Soc 99:4356–4367

    Article  CAS  Google Scholar 

  92. Gaines DF, Heppert JA, Kunz JC (1985) Hydrogen isotope exchange between boranes and deuterated aromatic hydrocarbons: evidence for reversible hydroboration of benzene. Inorg Chem 24:621–624

    Article  CAS  Google Scholar 

  93. Dopke JA, Gaines DF (1999) Deuteration of decaborane(14) via exchange with deuterated aromatic solvents. Inorg Chem 38:4896–4897

    Article  CAS  Google Scholar 

  94. D’Ulivo A, Dedina J, Mester Z et al (2011) Mechanisms of chemical generation of volatile hydrides for trace element determination (IUPAC Technical Report). Pure Appl Chem 83:1283–1340

    Google Scholar 

  95. Nelson DJ, Egbert JD, Nolan SP (2013) Deuteration of boranes: catalysed versus non-catalysed processes. Dalton Trans 42:4105–4109

    Article  CAS  Google Scholar 

  96. Atzrodt J, Derdau V, Fey T, Zimmermann J (2007) The renaissance of H/D exchange. Angew Chem Int Ed 46:7744–7765 and references therein.

    Google Scholar 

  97. Zhu Y, Widjaja E, Shirley LPS et al (2007) Ruthenium(0) nanoparticle-catalyzed isotope exchange between 10B and 11B nuclei in decaborane(14). J Am Chem Soc 129:6507–6512

    Article  CAS  Google Scholar 

  98. Tolmachev V, Sjőberg S (2002) Polyhedral boron compounds as potential linkers for attachment of radiohalogens to targeting proteins and peptides. A review. Collect Czech Chem Commun 67:913–935

    Article  CAS  Google Scholar 

  99. Winberg KJ, Barberà G, Eriksson L et al (2003) High yield [125I−]-labeling of iodinated carboranes by palladium catalyzed isotopic exchange. J Organomet Chem 680:188–192

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the Institute of Chemical and Engineering Sciences Ltd. (ICES) Singapore. NSH thanks the support from the National Science Foundation (Grant #CHE-0906179) and the Chinese Academy of Sciences for the visiting professorship for senior international scientists at Ningbo Institute of Materials Technology and Engineering (NIMTE).The timely help of Dr. K. Vijayaraghavan in proofreading the manuscript is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan S. Hosmane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhu, Y., Chakrabarti, A., Hosmane, N.S. (2015). Applications of Nanocatalysis in Boron Chemistry. In: Hnyk, D., McKee, M. (eds) Boron. Challenges and Advances in Computational Chemistry and Physics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-22282-0_8

Download citation

Publish with us

Policies and ethics