Boron pp 1-16

Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 20)

| Cite as

Classical and Multicenter Bonding in Boron: Two Faces of Boron

Abstract

In this chapter we have shown that boron has two faces in chemistry: with classical and multicenter bonding. When neutral boron atoms are involved in bonding, we usually encounter domination of multicenter bonding. Such examples are planar, quasi-planar, and three dimensional pure and doped boron clusters, two-dimensional sheets as well as conventional deltahedral boranes. However, when a boron atom acquires an extra electron, it tends to form molecules similar to those of the neighboring carbon featuring classical 2c-2e σ-bonds instead of multicenter ones. Such examples are BH4, analog of the CH4 molecule; LinBnH2n+2 molecules containing BnH2n+2n− kernels, which are isostructural to corresponding molecules in the CnH2n+2 series; Li6B6H6, analog of benzene; linear chain of boron anions in LiBx, analog of carbine; and 2D layer of boron in MgB2 mimicking the graphene structure. Chemistry of boron continues to expand conquering new territories and providing us with unprecedented structures, chemical bonding, internal rotations and other unusual properties. We believe we are at the beginning of new era of boron chemistry.

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  2. 2.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200CrossRefGoogle Scholar
  3. 3.
    Tang H, Ismail-Beigi S (2007) Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys Rev Lett 99:115501CrossRefGoogle Scholar
  4. 4.
    Tang H, Ismail-Beigi S (2009) Self-doping in boron sheets from first principles: a route to structural design of metal boride nanostructures. Phys Rev B 80:134113CrossRefGoogle Scholar
  5. 5.
    Yang X, Ding Y, Ni J (2008) Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties. Phys Rev B 77:041402CrossRefGoogle Scholar
  6. 6.
    Galeev TR, Chen Q, Guo J-C, Bai H, Miao C-Q, Lu H-G, Sergeeva AP, Li S-D, Boldyrev AI (2011) Deciphering the mystery of hexagon holes in an all-boron graphene α-sheet. Phys Chem Chem Phys 13:11575–11578CrossRefGoogle Scholar
  7. 7.
    Galeev TR, Dunnington BD, Schmidt JR, Boldyrev AI (2013) Solid state adaptive natural density partitioning: a tool for deciphering multi-center bonding in periodic systems. Phys Chem Chem Phys 15:5022–5029CrossRefGoogle Scholar
  8. 8.
    Olson JK, Boldyrev AI (2012) Electronic transmutation: boron acquiring an extra electron becomes ‘carbon’. Chem Phys Lett 523:83–86CrossRefGoogle Scholar
  9. 9.
    Dilthey WZ (1921) Personal- und Hochschulnachrichten. Angew Chem 34:596Google Scholar
  10. 10.
    Price WC (1947) The structure of diborane. J Chem Phys 15:614CrossRefGoogle Scholar
  11. 11.
    Price WC (1948) The absorption spectrum of diborane. J Chem Phys 16:894CrossRefGoogle Scholar
  12. 12.
    Bell RP, Longuet-Higgins HC (1945) The normal vibrations of bridged X2Y6 molecules. Proc R Soc (London) A 183:357–374CrossRefGoogle Scholar
  13. 13.
    Hedberg K, Schomaker V (1951) A reinvestigation of the structures of diborane and ethane by electron diffraction. J Am Chem Soc 73:1482–1487CrossRefGoogle Scholar
  14. 14.
    Lipscomb WN (1963) Boron hydrides. In: Benjamin WA (ed) The physical inorganic chemistry series. Verlag W. A. Benjamin Inc., New York/AmsterdamGoogle Scholar
  15. 15.
    Pitzer KS (1945) Electron deficient molecules. I The principles of hydroboron structures. J Am Chem Soc 67:1126–1132CrossRefGoogle Scholar
  16. 16.
    Eberhardt WH, Crawford B, Lipscomb WN (1954) The valence structure of the boron hydrides. J Chem Phys 22:989–1001CrossRefGoogle Scholar
  17. 17.
    Albert B, Hillebrecht H (2009) Boron: elementary challenge for experimenters and theoreticians. Angew Chem Int Ed 48:8640–8668CrossRefGoogle Scholar
  18. 18.
    White MA, Cerqueira AB, Whitman CA, Johnson MB, Ogitsu T (2015) Determination of phase stability of elemental boron. Angew Chem Int Ed 54:3626–3629CrossRefGoogle Scholar
  19. 19.
    Decker BF, Kasper JS (1959) The crystal structure of a simple rhombohedral form of boron. Acta Crystallogr 12:503–506CrossRefGoogle Scholar
  20. 20.
    Hoard JL, Sullenger DB, Kennard CHL, Hughes RE (1970) The structure analysis of β-rhombohedral boron. J Solid State Chem 1:268–277CrossRefGoogle Scholar
  21. 21.
    Oganov AR, Chen J, Gatti C, Ma YZ, Ma YM, Glass CW, Liu Z, Yu T, Kurakevych OO, Solozhenko VL (2009) Ionic high-pressure form of elemental boron. Nature 457:863–867CrossRefGoogle Scholar
  22. 22.
    (a) Popov IA, Piazza ZA, Li W-L, Wang LS, Boldyrev AI (2013) A combined photoelectron spectroscopy and ab initio study of the quasi-planar B24 cluster. J Chem Phys 139:144307; (b) Piazza ZA, Popov IA, Li W-L, Pal R, Zeng XC, Boldyrev AI, Wang LS (2014) A photoelectron spectroscopy and ab initio study of the structures and chemical bonding of the B25 cluster. J Chem Phys 141:034303Google Scholar
  23. 23.
    Alexandrova AN, Boldyrev AI, Zhai H-J, Wang LS (2006) All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord Chem Rev 250:2811–2866Google Scholar
  24. 24.
    Sergeeva AP, Popov IA, Piazza ZA, Li W-L, Romanescu C, Wang LS, Boldyrev AI (2014) Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc Chem Res 47:1349–1358Google Scholar
  25. 25.
    Zhai H-J, Alexandrova AN, Birch KA, Boldyrev AI, Wang LS (2003) Hepta- and octacoordinated boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. Angew Chem Int Ed 42:6004–6008Google Scholar
  26. 26.
    Zubarev DY, Boldyrev AI (2008) Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10:5207–5217CrossRefGoogle Scholar
  27. 27.
    Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218CrossRefGoogle Scholar
  28. 28.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  29. 29.
    Hotop H, Lineberger WC (1985) Binding energies in atomic negative ions. J Phys Chem Ref Data 14:731–750CrossRefGoogle Scholar
  30. 30.
    Fowler PW, Gray BR (2007) Induced currents and electron counting in aromatic boron wheels: B8 2− and B9 . Inorg Chem 46:2892–2897CrossRefGoogle Scholar
  31. 31.
    Romanescu C, Galeev TR, Li WL, Boldyrev AI, Wang LS (2011) Aromatic metal-centered monocyclic boron rings: Co©B8 and Ru©B9 . Angew Chem Int Ed 50:9334–9337Google Scholar
  32. 32.
    Li WL, Romanescu C, Galeev TR, Piazza ZA, Boldyrev AI, Wang LS (2012) Transition-metal-centered nine-membered boron rings: M©B9 and M©B9 . (M = Rh, Ir). J Am Chem Soc 134:165–168Google Scholar
  33. 33.
    Romanescu C, Galeev TR, Sergeeva AP, Li WL, Wang LS, Boldyrev AI (2012) Experimental and computational evidence of octa- and nona-coordinated planar iron-doped boron clusters: Fe©B8 and Fe©B9 . J Organomet Chem 721–722:148–154Google Scholar
  34. 34.
    Galeev TR, Romanescu C, Li WL, Wang LS, Boldyrev AI (2012) Observation of the highest coordination number in planar species: decacoordinated Ta©B10 and Nb©B10 anions. Angew Chem Int Ed 51:2101–2105Google Scholar
  35. 35.
    Romanescu C, Galeev TR, Li WL, Boldyrev AI, Wang LS (2013) Transition-metal-centered monocyclic boron wheel clusters (M©Bn): a new class of aromatic borometallic compounds. Acc Chem Res 46:350–358CrossRefGoogle Scholar
  36. 36.
    Oliva JM, Vegas Á (2012) Merging boron solid state and molecular chemistry: energy landscapes in the exo/endo closo-borane complex Sc[B24H24]+. Chem Phys Lett 533:50–55CrossRefGoogle Scholar
  37. 37.
    Forkwa BPT, Hermus M (2012) All-boron planar B6 ring in the solid-state phase Ti7Rh4Ir2B8. Angew Chem Int Ed 51:1702–1705CrossRefGoogle Scholar
  38. 38.
    Mbarki M, Touzani RS, Fokwa BPT (2014) Unexpected synergy between magnetic iron chains and stacked B6 rings in Nb6Fe1−xIr6+xB8. Angew Chem Int Ed 53:13174–13177CrossRefGoogle Scholar
  39. 39.
    Jimenez-Halla JOC, Islas R, Heine T, Merino G (2010) B19 : an aromatic Wankel motor. Angew Chem Int Ed 49:5668–5671CrossRefGoogle Scholar
  40. 40.
    Martínez-Guajardo G, Sergeeva AP, Boldyrev AI, Heine T, Ugalde JM, Merino G (2011) Unravelling phenomenon of internal rotation in B13 + through chemical bonding analysis. Chem Comm 47:6242–6244CrossRefGoogle Scholar
  41. 41.
    Zhang J, Sergeeva AP, Sparta M, Alexandrova AN (2012) B13 +: a photodriven molecular Wankel engine. Angew Chem Int Ed 51:8512–8515CrossRefGoogle Scholar
  42. 42.
    (a) Huang W, Sergeeva AP, Zhai HJ, Averkiev BB, Wang LS, Boldyrev AI (2010) A concentric planar doubly π-aromatic B19 cluster. Nature Chem 2:202–206; (b) Popov IA, Boldyrev AI (2012) Chemical bonding in coronene, isocoronene, and circumcoronene. Eur J Org Chem 2012:3485–3491Google Scholar
  43. 43.
    Gu FL, Yang X, Tang AC, Jiao H, Schleyer PR (1998) Structure and stability of B13 + clusters. J Comput Chem 19:203–214CrossRefGoogle Scholar
  44. 44.
    Moreno D, Pan S, Zeonjuk LL, Islas R, Osorio E, Martinez-Guajardo G, Chattaraj P, Heine T, Merino G (2014) B18 2−: a quasi-planar bowl member of the Wankel motor family. Chem Comm 50:8140–8143CrossRefGoogle Scholar
  45. 45.
    Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  46. 46.
    Szwacki NG, Sadrzadeh A, Yakobson BI (2007) B80 fullerene: an ab initio prediction of geometry, stability, and electronic structure. Phys Rev Lett 98:166804; (2008) erratum 100:159901CrossRefGoogle Scholar
  47. 47.
    Yan QB, Sheng X-L, Zheng Q-R, Zhang L-Z, Su G (2008) Family of boron fullerenes: general constructing schemes, electron counting rule, and ab initio calculations. Phys Rev B 78:201401CrossRefGoogle Scholar
  48. 48.
    Zope RR, Baruah T, Lau KC, Liu AY, Pederson MR, Dunlap BI (2009) Boron fullerenes: from B80 to hole doped boron sheets. Phys Rev B 79:161403CrossRefGoogle Scholar
  49. 49.
    Sheng XL, Yan QB, Zheng QR, Su G (2009) Boron fullerenes B(32 + 8 k) with four-membered rings and B32 solid phases: geometrical structures and electronic properties. Phys Chem Chem Phys 11:9696–9702CrossRefGoogle Scholar
  50. 50.
    Özdoğan C, Mukhopadhyay S, Hayami W, Güvenc ZB, Pandey R, Boustani I (2010) The unusually stable B100 fullerene, structural transitions in boron nanostructures, and a comparative study of α- and γ-boron and sheets. J Phys Chem C 114:4362–4375CrossRefGoogle Scholar
  51. 51.
    Wang L, Zhao J, Li F, Chen Z (2010) Boron fullerenes with 32–56 atoms: irregular cage configurations and electronic properties. Chem Phys Lett 501:16–19CrossRefGoogle Scholar
  52. 52.
    Muya JT, Gopakumar G, Nguyen MT, Ceulemans A (2011) The leapfrog principle for boron fullerenes: a theoretical study of structures and stability of B112. Phys Chem Chem Phys 13:7524–7533CrossRefGoogle Scholar
  53. 53.
    Zope RR, Baruah T (2011) Snub boron nanostructures: chiral fullerenes, nanotubes and planar sheet. Chem Phys Lett 501:193–196CrossRefGoogle Scholar
  54. 54.
    Polad S, Ozay M (2013) A new hole density as a stability measure for boron fullerenes. Phys Chem Chem Phys 15:19819–19824CrossRefGoogle Scholar
  55. 55.
    Prasad DLVK, Jemmis ED (2008) Stuffing improves the stability of fullerene-like boron clusters. Phys Rev Lett 100:165504CrossRefGoogle Scholar
  56. 56.
    De S, Willand A, Amsler M, Pochet P, Genovese L, Goedecker S (2011) Energy landscape of fullerene materials: a comparison of boron to boron nitride and carbon. Phys Rev Lett 106:225502CrossRefGoogle Scholar
  57. 57.
    Li F, Jin P, Jiang D, Wang L, Zhang SB, Zhao J, Chen Z (2012) B80 and B101–103 clusters: remarkable stability of the core–shell structures established by validated density functional. J Chem Phys 136:074302CrossRefGoogle Scholar
  58. 58.
    Boulanger P, Moriniere M, Genovese L, Pochet P (2013) Selecting boron fullerenes by cage-doping mechanisms. J Chem Phys 138:184302CrossRefGoogle Scholar
  59. 59.
    Zhai H-J, Zhao Y-F, Li W-L, Chen Q, Bai H, Hu H-S, Piazza ZA, Tian W-J, Lu H-G, Wu Y-B, Mu Y-W, Wei G-F, Liu Z-P, Li J, Li S-D, Wang L-S (2014) Observation of an all-boron fullerene. Nat Chem 6:727–731Google Scholar
  60. 60.
    Chen Q, Li W-L, Zhao Y-F, Zhang S-Y, Hu H-S, Bai H, Li H-R, Tian W-J, Lu H-G, Zhai H-J, Li S-D, Li J, Wang L-S (2015) Experimental and theoretical evidence of an axially chiral borospherene. ACS Nano 9:754–760CrossRefGoogle Scholar
  61. 61.
    Osorio E, Olson JK, Tiznado W, Boldyrev AI (2012) Analysis of why boron avoids sp2 hybridization and classical structures in the BnHn+2 series. Chem Eur J 18:9677–9681CrossRefGoogle Scholar
  62. 62.
    Dávalos JZ, González J, Guerrero A, Hnyk D, Holub J, Oliva JM (2013) Anionic oligomerization of Li2[B12H12] and Li[CB11H12]: an experimental and computational study. J Phys Chem C 117:1495–1501CrossRefGoogle Scholar
  63. 63.
    Oliva JM, Fernández-Barbero A, Serrano-Andrés L, Canle-L M, Santaballa JA, Fernández MI (2010) Energy landscapes in diexo and exo/endo isomers derived from Li2B12H12. Chem Phys Lett 497:172–177CrossRefGoogle Scholar
  64. 64.
    Her J-H, Yousufuddin M, Zhou W, Jalisatgi SS, Kulleck JG, Zan JA, Hwang S-J, Bowman RC Jr, Udovic TJ (2008) Crystal structure of Li2B12H12: a possible intermediate species in the decomposition of LiBH4. Inorg Chem 47:9757–9759CrossRefGoogle Scholar
  65. 65.
    Popov IA, Boldyrev AI (2013) Computational probing of all-boron Li2nB2nH2n+2 polyenes. Comp Theor Chem 1004:5–11Google Scholar
  66. 66.
    Alexandrova AN, Birch KA, Boldyrev AI (2003) Flattening the B6H6 2− Octahedron. Ab initio prediction of the new family of planar all-boron aromatic molecules. J Am Chem Soc 125:10786–10787CrossRefGoogle Scholar
  67. 67.
    Gish JT, Popov IA, Boldyrev AI (2015) Homocatenation of aluminum: alkane-like structures of Li2Al2H6 and Li3Al3H8. Chem Eur J. 21:5307-5310.Google Scholar
  68. 68.
    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J (2001) Superconductivity at 39 K in magnesium diboride. Nature 410:63–64CrossRefGoogle Scholar
  69. 69.
    Popov IA, Bozhenko KV, Boldyrev AI (2012) Is graphene aromatic? Nano Res 5:117–123CrossRefGoogle Scholar
  70. 70.
    Wörle M, Nesper R (2000) Infinite, linear, unbranched borynide chains in LiBx – isoelectronic to polyyne and polycumulene. Angew Chem Int Ed 39:2349–2353CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUtah State UniversityLoganUSA

Personalised recommendations