Verifiable Internet Elections with Everlasting Privacy and Minimal Trust

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9269)

Abstract

This paper presents a new cryptographic Internet voting protocol based on a set membership proof and a proof of knowledge of the representation of a committed value. When casting a vote, the voter provides a zero-knowledge proof of knowledge of the representation of one of the registered voter credentials. In this way, votes are anonymized without the need of trusted authorities. The absence of such authorities reduces the trust assumptions to a minimum and makes our protocol remarkably simple. Since computational intractability assumptions are only necessary to prevent the creation of invalid votes during the voting period, but not to protect the secrecy of the vote, the protocol even offers a solution to the everlasting privacy problem.

References

  1. 1.
    Arapinis, M., Cortier, V., Kremer, S., Ryan, M.: Practical everlasting privacy. In: Basin, D., Mitchell, J.C. (eds.) POST 2013 (ETAPS 2013). LNCS, vol. 7796, pp. 21–40. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  2. 2.
    Au, M.H., Susilo, W., Mu, Y.: Proof-of-knowledge of representation of committed value and its applications. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 352–369. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  3. 3.
    Bayer, S., Groth, J.: Zero-knowledge argument for polynomial evaluation with application to blacklists. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 646–663. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy. MIT Press, Cambridge (2000)MATHGoogle Scholar
  5. 5.
    Brands, S., Demuynck, L., De Decker, B.: A practical system for globally revoking the unlinkable pseudonyms of unknown users. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 400–415. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  6. 6.
    Buchmann, J., Demirel, D., van de Graaf, J.: Towards a publicly-verifiable mix-net providing everlasting privacy. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 197–204. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Camenisch, J.L., Chaabouni, R., Shelat, A.: Efficient protocols for set membership and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  8. 8.
    Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  9. 9.
    Canard, S., Traoré, J.: List signature schemes and application to electronic voting. In: Augot, D., Charpin, P., Kabatianski, G. (eds.) WCC’03, 3rd International Workshop on Coding and Cryptography, Versailles, France, pp. 81–90 (2003)Google Scholar
  10. 10.
    Chaum, D.: The dining cryptographers problem: unconditional sender and recipient untraceability. J. Cryptol. 1(1), 65–75 (1988)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Demirel, D., Henning, M., van de Graaf, J., Ryan, P.Y.A., Buchmann, J.: Prêt à voter providing everlasting privacy. In: Heather, J., Schneider, S., Teague, V. (eds.) Vote-ID 2013. LNCS, vol. 7985, pp. 156–175. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  12. 12.
    Demirel, D., van de Graaf, J., Araújo, R.: Improving Helios with everlasting privacy towards the public. In: Halderman, J.A., Pereira, O. (eds.) Electronic Voting Technology Workshop/Workshop on Trustworthy Elections, EVT/WOTE 2012, Bellevue, USA (2012)Google Scholar
  13. 13.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987) Google Scholar
  14. 14.
    Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale elections. In: Seberry, J., Zheng, Y. (eds.) ASIACRYPT 1992. LNCS, vol. 718, pp. 244–251. Springer, Heidelberg (1992)Google Scholar
  15. 15.
    Groth, J.: Efficient maximal privacy in boardroom voting and anonymous broadcast. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 90–104. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  16. 16.
    Kiayias, A., Yung, M.: Self-tallying Elections and Perfect Ballot Secrecy. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 141–158. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  17. 17.
    Locher, P., Haenni, R.: A lightweight implementation of a shuffle proof for electronic voting systems. In: Plödereder, E., Grunske, L., Schneider, E., Ull, D. (eds.) INFORMATIK 2014. Lecture Notes in Informatics, Stuttgart, Germany, pp. 1391–1400. Gesellschaft für Informatik, Bonn (2014)Google Scholar
  18. 18.
    Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting privacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  19. 19.
    Moran, T., Naor, M.: Split-ballot voting: everlasting privacy with distributed trust. In: Ning, P., de Capitani di Vimercati, S., Syverson, P. (eds.) CC 2007, 14th ACM Conference on Computer and Communications Security, Alexandria, USA, pp. 246–255 (2007)Google Scholar
  20. 20.
    Moran, T., Naor, M.: Split-ballot voting: everlasting privacy with distributed trust. ACM Trans. Inf. Syst. Secur. 13(2), 16:1–16:43 (2010)CrossRefGoogle Scholar
  21. 21.
    van de Graaf, J.: Voting with unconditional privacy by merging Prêt à Voter and PunchScan. IEEE Trans. Info. Forensics Secur. 4(4), 674–684 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Bern University of Applied SciencesBielSwitzerland
  2. 2.University of FribourgFribourgSwitzerland

Personalised recommendations