Advertisement

Lumping-Based Equivalences in Markovian Automata and Applications to Product-Form Analyses

  • Andrea Marin
  • Sabina RossiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9259)

Abstract

The analysis of models specified with formalisms like Markovian process algebras or stochastic automata can be based on equivalence relations among the states. In this paper we introduce a relation called exact equivalence that, differently from most aggegation approaches, induces an exact lumping on the underlying Markov chain instead of a strong lumping. We prove that this relation is a congruence for Markovian process algebras and stochastic automata whose synchronisation semantics can be seen as the master/slave synchronisation of the Stochastic Automata Networks (SAN). We show the usefulness of this relation by proving that the class of quasi-reversible models is closed under exact equivalence. Quasi-reversibility is a pivotal property to study product-form models, i.e., models whose equilibrium behaviour can be computed very efficiently without the problem of the state space explosion. Hence, exact equivalence turns out to be a theoretical tool to prove the product-form of models by showing that they are exactly equivalent to models which are known to be quasi-reversible.

Keywords

State Space Markov Process Invariant Measure Process Algebra Continuous Time Markov Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baarir, S., Beccuti, M., Dutheillet, C., Franceschinis, G., Haddad, S.: Lumping partially symmetrical stochastic models. Perf. Eval. 68(1), 21–44 (2011)CrossRefGoogle Scholar
  2. 2.
    Baier, C., Katoen, J.-P., Hermanns, H.: Comparative branching-time semantics for markov chains. Inf. Comput. 200(2), 149–214 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Balsamo, S., Marin, A.: Queueing networks. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 34–82. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  4. 4.
    Balsamo, S., Dei Rossi, G.-L., Marin, A.: Lumping and reversed processes in cooperating automata. In: Al-Begain, K., Fiems, D., Vincent, J.-M. (eds.) ASMTA 2012. LNCS, vol. 7314, pp. 212–226. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  5. 5.
    Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed networks of queues with different classes of customers. J. ACM 22(2), 248–260 (1975)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Bernardo, M.: Weak Markovian bisimulation congruences and exact CTMC-level aggregations for concurrent processes. In: Proceedings of the 10th Workshop on Quantitative Aspects of Programming Languages and Systems (QALP12), pp. 122–136 (2012)Google Scholar
  7. 7.
    Bernardo, M., Gorrieri, R.: A tutorial on empa: a theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theo. Comput. Sci. 202, 1–54 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Bravetti, M.: Revisiting interactive markov chains. Electr. Notes Theor. Comput. Sci. 68(5), 65–84 (2003)CrossRefGoogle Scholar
  9. 9.
    Buchholz, P.: Exact and ordinary lumpability in finite markov chains. J. Appl. Probab. 31, 59–75 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Buchholz, P.: Exact performance equivalence: an equivalence relation for stochastic automata. Theor. Comput. Sci. 215(1–2), 263–287 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Harrison, P.G.: Turning back time in markovian process algebra. Theo. Comput. Sci. 290(3), 1947–1986 (2003)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hermanns, H.: Interactive Markov Chains. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Hermanns, H., Herzog, U., Katoen, J.P.: Process algebra for performance evaluation. Theor. Comput. Sci. 274(1–2), 43–87 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge Press, Cambridge (1996)CrossRefGoogle Scholar
  15. 15.
    Hillston, J., Marin, A., Piazza, C., Rossi, S.: Contextual lumpability. In: Proceedings of Valuetools 2013 Conference. ACM Press (2013)Google Scholar
  16. 16.
    Skou, A., Larsen, K.G.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Kelly, F.: Reversibility and Stochastic Networks. Wiley, New York (1979) zbMATHGoogle Scholar
  18. 18.
    Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, Heidelberg (1976)zbMATHGoogle Scholar
  19. 19.
    Le Boudec, J.Y.: A BCMP extension to multiserver stations with concurrent classes of customers. In: SIGMETRICS 1986/PERFORMANCE 1986: Proceedings of the 1986 ACM SIGMETRICS International Conference on Computer Performance Modelling, Measurement and Evaluation, pp. 78–91. ACM Press, New York, NY (1986)Google Scholar
  20. 20.
    Marin, A., Rossi, S.: Autoreversibility: exploiting symmetries in Markov chains. In: Proceedings of MASCOTS 2013, pp. 151–160. IEEE Computer Society (2013)Google Scholar
  21. 21.
    Marin, A., Vigliotti, M.G.: A general result for deriving product-form solutions of Markovian models. In: Proceedings of First Joint WOSP/SIPEW International Conference on Performance Engineering, pp. 165–176. ACM, San Josè, CA, USA (2010)Google Scholar
  22. 22.
    Molloy, M.K.: Performance analysis using stochastic petri nets. IEEE Trans. on Comput. 31(9), 913–917 (1982)CrossRefGoogle Scholar
  23. 23.
    Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Plateau, B.: On the stochastic structure of parallelism and synchronization models for distributed algorithms. SIGMETRICS Perf. Eval. Rev. 13(2), 147–154 (1985)CrossRefGoogle Scholar
  25. 25.
    Schweitzer, P.: Aggregation methods for large Markov chains. In: Mathematical Computer Performance and Reliability (1984)Google Scholar
  26. 26.
    Sproston, J., Donatelli, S.: Backward bisimulation in markov chain model checking. IEEE TSE 32(8), 531–546 (2006)Google Scholar
  27. 27.
    Sumita, U., Reiders, M.: Lumpability and time-reversibility in the aggregation-disaggregation method for large markov chains. Commun. Stat. Stoch. Models 5, 63–81 (1989)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.DAIS - Università Ca’ FoscariVeniceItaly

Personalised recommendations