Abstract
Venn diagrams have turned out to be visual tools that are enormously popular, but diagrams to help visualize relationships between classes or concepts in logic had existed prior to those of John Venn. The use of diagrams to demonstrate valid logical arguments has been found in the works of a few early Aristotelian scholars and appeared in the works of the famed mathematicians Gottfried Wilhelm Leibniz and Leonhard Euler. In a 1686 fragment (which remained unpublished for over 200 years), the universal genius Leibniz illustrated all of Aristotle’s valid syllogisms through circle drawings. In 1761, the much-admired master mathematician Euler used almost identical diagrams to explain the same logical syllogisms. One hundred and twenty years later, John Venn ingeniously altered what he called “Euler circles” to become the familiar diagrams attached to Venn’s name. This paper explores the history of the Venn diagram and its predecessors.
Keywords
- Venn Diagram
- Line Diagram
- Diagrammatic Method
- Puzzle Piece
- Eulerian Diagram
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options












References
Aristotle. (1619). Aristotelis Stagiritae Peripateticorum Principis Organum (Paris ed.), translated by Julius Pacius a Beriga with commentary. Sebastianum Chappelet. http://books.google.com
Bullynck, M. (2013). Erhard Weigel’s contributions to the formation of symbolic logic. History and Philosophy of Logic, 34(1), 25–34.
Dalton, O. M. (1925). A portable dial in the form of a book, with figures derived from Raymond Lul. Archaeologia, 74, 89–102.
Dunham, W. (1990). Journey through Genius. New York: Penguin.
Euler, L. (1770). Lettres a une Princesse D’Allemagne sur divers sujets de physique et de philosophie, Tome second. Mietau et Leipsic: Chez Steidel et compagnie. http://www.e-rara.ch/zut/content/pageview/2380250
Euler, L. (1802). Letters of Euler on different subjects in physics and philosophy addressed to a German Princess (CI–CVIII) (2nd ed.), translated by Henry Hunter. London: Murray and Highley.
Gardner, M. (1958). Logic machines and diagrams. New York: McGraw-Hill.
Hamilton, S. W. (1874). Lectures on metaphysics and logic, Vol. III: Lectures on logic, Vol. I (3rd ed.). Edinburgh and London: William Blackwood and Sons.
Lambert, J. H. (1764). Neues Organon (Vol. 1, pp. 128–133). Leipzig.
Leibniz, G. W. (1903). De Formae Logicae Comprobatione per Linearum Ductus, Phil., VII, B, IV, 1–10. Opuscules et fragments inédits de Leibniz, extraits des ms. de la Bibliothèque royale de Hanovre par Louis Couturat. Paris, pp. 292–331. Bibliothèque Nationale in Paris Gallica, http://gallica.bnf.fr/ark:/12148/bpt6k68142b.r=Leibniz+Logicae.langEN
Leibniz, G. (1966). Logical papers. Translated and edited by G. H. R. Parkinson. Oxford: Clarendon Press.
Llull, R. (1609). Opera ea quae ad adinventam ab ipso artem universalem scientiarum. Sumptibus Lazarus Zetzne Bibliopola. Google Books: Bavarian State Library, p. 109. http://books.google.com/books?id=NxhCAAAAcAAJ&pg=RA4-PT875&dq=opera+ea+quae+ad+adinventam+ab+ipso+arte+lullius&hl=en&sa=X&ei=G7ApU_KmFOXA0gHa4oHwCg&ved=0CFAQuwUwBg#v=onepage&q&f=false
Nubiola, J. (1993). Juan Luis Vives y Charles S. Peirce. Anuario Filosófico, 26, 155–164.
Sales, T. (2011). Llull as computer scientist, or Why Llull was one of us. In A. Fidora & C. Sierra (Eds.), Ramon Llull: From the Ars Magna to Artificial Intelligence (pp. 25–38). Barcelona, Spain: Artificial Intelligence Research Institute. http://www.iiia.csic.es/library.
Sholz, H. (1961). Abriss der Geschichte der Logik (Concise History of Logic), translated by Kurt F. Leidecker. Philosophical Library, New York (Original work published 1931).
Venn, J. (1880). On the diagrammatic and mechanical representations of propositions and reasonings. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 9(59), 1–18.
Venn, J. (1881). Symbolic logic. London: Macmillan and Co. Forgotten Books 2012 reprint.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Bennett, D. (2015). Origins of the Venn Diagram. In: Zack, M., Landry, E. (eds) Research in History and Philosophy of Mathematics. Proceedings of the Canadian Society for History and Philosophy of Mathematics/La Société Canadienne d’Histoire et de Philosophie des Mathématiques. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-22258-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-22258-5_8
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-319-22257-8
Online ISBN: 978-3-319-22258-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)