The Eighteenth-Century Origins of the Concept of Mixed-Strategy Equilibrium in Game Theory

  • Nicolas FillionEmail author
Conference paper
Part of the Proceedings of the Canadian Society for History and Philosophy of Mathematics/La Société Canadienne d’Histoire et de Philosophie des Mathématiques book series (PCSHPM)


This paper examines the circumstances surrounding the first historical appearance of the game-theoretical concept of mixed-strategy equilibrium. Despite widespread belief that this concept was developed in the first half of the twentieth century, its origins are in fact to be found in the early eighteenth century. After reconstructing the game analysis of Montmort, Waldegrave, and Bernoulli using modern methods and terminology, I argue that their discussion of the concept of solution to a game also anticipated refinements of the concept of equilibrium that we typically associate with the second half of the twentieth century.


Game Theory Mixed Strategy Pure Strategy Strategy Profile Strategic Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bellhouse, D. R. (2007). The problem of Waldegrave. Electronic Journal for the History of Probability and Statistics, 3(2), 1–12.MathSciNetGoogle Scholar
  2. Bellhouse, D. R., & Fillion, N. (2015). Le Her and other problems in probability discussed by Bernoulli, Montmort and Waldegrave. Statistical Science, 30(1), 26–39.MathSciNetCrossRefGoogle Scholar
  3. Borel, É. (1921). La théorie du jeu et les équations, intégrales à noyau symétrique gauche. Comptes rendus de l’Académie des Sciences, 173(Décembre), 1304–1308.Google Scholar
  4. de Montmort, P. R. (1708). Essay d’analyse sur les jeux de hazard. Paris: Jacques Quillau.Google Scholar
  5. de Montmort, P. R. (1713). Essay d’analyse sur les jeux de hazard (2nd ed.). Paris: Jacques Quillau.Google Scholar
  6. Dimand, R. W., & Dimand, M. A. (1992). The early history of the theory of strategic games from Waldegrave to Borel. In E. R. Weintraub (Ed.), Toward a history of game theory. Durham: Duke University Press.Google Scholar
  7. Fisher, R. A. (1934). Randomisation, and an old enigma of card play. The Mathematical Gazette, 18(231), 294–297.CrossRefGoogle Scholar
  8. Hald, A. (1990). A history of probability and statistics and their applications before 1750. Hoboken: Wiley.zbMATHCrossRefGoogle Scholar
  9. Henny, J. (1975). Niklaus und Johann Bernoulli’s forschungen auf dem gebiet der wahrscheinlichrechnung in ihrem briefwechel mit Pierre Rémond de Montmort. Die Werke von Jakob Bernoulli Band (Vol. 3, pp. 457–507). Basel: Birkhäuser Verlag.Google Scholar
  10. Kuhn, H. (1968). Introduction to de montmort. In W. J. Baumol & S. Goldfeld (Eds.) Precursors in mathematical economics: An anthology. London: London School of Economics.Google Scholar
  11. Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, 36(1), 48–49.zbMATHMathSciNetCrossRefGoogle Scholar
  12. Rives, N. W. (1975). On the history of the mathematical theory of games. History of Political Economy, 7(4), 549–565.CrossRefGoogle Scholar
  13. Todhunter, I. (1865). A history of the mathematical theory of probability. Cambridge and London: MacMillan and Co.Google Scholar
  14. von Neumann, J. (1928). Zur theorie der gesellschaftsspiele. Mathematische Annalen, 100, 295–320.zbMATHMathSciNetCrossRefGoogle Scholar
  15. von Neumann, J., & Morgenstern, O. (1944). The theory of games and economic behavior. Princeton: Princeton University Press.Google Scholar
  16. Weintraub, E. R. (1992). Introduction. In E. R. Weintraub (Ed.), Toward a history of game theory. Durham: Duke University Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of PhilosophySimon Fraser UniversityBurnabyCanada

Personalised recommendations