Advertisement

History and Philosophy of Mathematics at the 1924 International Mathematical Congress in Toronto

  • David OrensteinEmail author
Conference paper
  • 498 Downloads
Part of the Proceedings of the Canadian Society for History and Philosophy of Mathematics/La Société Canadienne d’Histoire et de Philosophie des Mathématiques book series (PCSHPM)

Abstract

When the University of Toronto hosted the International Mathematical Congress (IMC) in August 1924, the prime organizer, University of Toronto mathematician John Charles Fields (1863–1932) insisted the papers cover a wide range of mathematical topics: algebra, analysis, astronomy, engineering, statistics, and history and philosophy of mathematics. Section VI of the Congress covered History, Philosophy and Didactics of Mathematics. There were in total 13 papers in the published proceedings: seven full Communications and six Abstracts. Five were historical, six philosophical and only two pedagogical. In Section VI the American algebraist G. A. Miller looked at “The History of Several Mathematical Concepts” including “the unknown” and “permutations”, going back to the ancient Egyptians and Greeks. Miller also presented in Toronto on algebra, looking at commutativity in Abelian subgroups. The great Italian logician Giuseppe Peano, who had also presented in Zurich in 1897 at the IMC and then in Cambridge in 1912, spoke in simplified Latin “De Aequalitate”, On Equality. The Swiss educator Henri Fehr contributed to the pedagogical programmes at four other IMCs (1904, 1908, 1912 and 1932), focusing in Toronto on the university’s preparation of high school mathematics teachers. Florian Cajori, the great American historian of mathematics, discussed mathematical notation in two different papers: its history in geometry and a programme for its improvement. This paper examines the role of both History and Philosophy of Mathematics at the Toronto IMC.

Keywords

Mathematical Notation American Mathematical Society British Association International Mathematical Mathematical Sign 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. American Association for the Advancement of Science. (1921). Program for the Seventy-Fourth Meeting. Toronto, ON, Canada: University of Toronto Press.Google Scholar
  2. Archibald, R. C. (1938). A Semicentennial History of the American Mathematical Society 1888–1938. New York: American Mathematical Society.Google Scholar
  3. Beatty, S. (1939). An outline of the progress of mathematics in Canada. In H. M. Tory (Ed.), Ahistory of science in Canada (pp. 100–119).Google Scholar
  4. British Association for the Advancement of Science. (1925). Report of the Annual Meeting 1924. London: BAAS.Google Scholar
  5. Cajori, F. (1928a). Uniformity of mathematical notations – retrospect and prospect. In Proceedings of the International Mathematical Congress Toronto, 1924 (Vol. 2, pp.929–936).Google Scholar
  6. Cajori, F. (1928b). Past struggles between symbolists and rhetoricians in mathematical publications. In Proceedings of the International Mathematical Congress Toronto, 1924 (Vol. 2, pp.937–942).Google Scholar
  7. Fehr, H. (1899). Application de la méthode vectorielle de Grassmann à la géométrie infinitésimale. Paris: Georges Carré et C. Naud Éditeurs.zbMATHGoogle Scholar
  8. Fehr, H. (1908). Enquête de “L’Enseignement mathématique” sur la méthode de travail des mathématiciens. Paris and Geneva: Gauthier-Villars, Éditeur and Georg & Cie, Éditeurs.Google Scholar
  9. Fehr, H. (1923). Congrès international de mathématiques. L’Enseignement mathématique, 23, 99–100.Google Scholar
  10. Fehr, H. (1924a). Congrès de Toronto, août 1924. L’Enseignement mathématique, 23, 226–227.Google Scholar
  11. Fehr, H. (1924b). Congrès de Toronto, août 1924. L’Enseignement mathématique, 23, 329.Google Scholar
  12. Fehr, H. (1925a). Le Congrès international de mathématiques de Toronto. L’Enseignement mathématique, 24, 110–123.zbMATHGoogle Scholar
  13. Fehr, H. (1925b). Le Congrès international de mathématiques de Toronto. Paris: Gauthier-Villars.Google Scholar
  14. Fehr, H. (1928). L’Université et la préparation des professeurs de mathématiques. In Proceedings of the International Mathematical Congress Toronto, 1924 (Vol. 2, p. 987).Google Scholar
  15. Fehr, H. (1932). Nécrologie. L’Enseignement mathématique, 31, 127.zbMATHGoogle Scholar
  16. Fields, J. C. (Ed.). (1928a). Fields, J. C. (Ed.) (1928b) of the International Mathematical Congress Toronto, 1924 (2 volumes). Toronto, ON, Canada: University of Toronto Press.Google Scholar
  17. Fields, J. C. (1928b). A Fields, J.C. (1928a) for the theory of ideals. In Fields, J. C. (Ed.) (1928b) of the International Mathematical Congress Toronto, 1924 (Vol. 1, pp.245–298).Google Scholar
  18. Hart House. (1924). Conversazione Programme.Google Scholar
  19. Miller, G. A. (1916). Historical introduction to mathematical literature. New York: The Macmillan Company.Google Scholar
  20. Miller, G. A. (1928a). Commutative conjugate cycles in subgroups of the holomorph of an Abelian group. In Proceedings of the International Mathematical Congress Toronto, 1924 (Vol. 2, pp.365–371).Google Scholar
  21. Miller, G. A. (1928b). History of several fundamental mathematical concepts. In Proceedings of the International Mathematical Congress Toronto, 1924 (Vol. 2, pp.950–958).Google Scholar
  22. Moore, E. H., et al. (Eds.). (1896). Mathematical papers read at the International Mathematical Congress. New York: American Mathematical Society.zbMATHGoogle Scholar
  23. Orenstein, D. (2012). M-251 from Quebec City, a Multiply Connected Early Canadian Manuscript in the Mathematical Sciences. Proceedings CSHPM, 25, 143–148.Google Scholar
  24. Peano, G. (1894). Notations de logique mathématique. Turin, Italy: Rivista di Matematica.Google Scholar
  25. Peano, G. (1912). Letter to Bertrand Russell, August 22, 1912, Box 5.3 Item 710.054233, Bertrand Russell Archives, William Ready Division of Archives and Special Collections, MacMaster University Library, Hamilton, Ontario, Canada.Google Scholar
  26. Peano, G. (1928). De Aequalitate. In Proceedings of the International Mathematical Congress Toronto, 1924 (Vol. 2, pp.988–989).Google Scholar
  27. Riehm, E. M. K., & Hoffman, F. (2011). Turbulent times in mathematics: The life of J. C. Fields and the history of the Fields medal. Toronto, ON, Canada: American Mathematical Society and The Fields Institute.Google Scholar
  28. Varsity. (1921). The Varsity. February 11, 1921.Google Scholar
  29. Varsity. (1924). M. and P. Society Holds Meeting…On Congresses/Fields praised. The Varsity. October 16, 1924.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.TorontoCanada

Personalised recommendations